期刊文献+

On the optimal harvesting of size-structured population dynamics 被引量:6

On the optimal harvesting of size-structured population dynamics
下载PDF
导出
摘要 This work is concerned with a kind of optimal control problem for a size-structured biological population model.Well-posedness of the state system and an adjoint system are proved by means of Banach's fixed point theorem.Existence and uniqueness of optimal control are shown by functional analytical approach.Optimality conditions describing the optimal strategy are established via tangent and normal cones technique.The results are of the first ones for this novel structure. This work is concerned with a kind of optimal control problem for a size-structured biological population model.Well-posedness of the state system and an adjoint system are proved by means of Banach's fixed point theorem.Existence and uniqueness of optimal control are shown by functional analytical approach.Optimality conditions describing the optimal strategy are established via tangent and normal cones technique.The results are of the first ones for this novel structure.
出处 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2013年第2期173-186,共14页 高校应用数学学报(英文版)(B辑)
基金 Supported by the ZPNSFC (LY12A01023) the National Natural Science Foundation of China (11271104,11061017)
关键词 Body size population model optimal harvest maximum principle normal cone. Body size, population model, optimal harvest, maximum principle, normal cone.
  • 引文网络
  • 相关文献

参考文献26

  • 1S Anita. Analysis and Control of Age-Dependent Population Dynamics, Kluwer, Dordrecht, 2000.
  • 2V Barbu, M Iannelli. Optimal control of population dynamics, J Optim Theory Appl, 1999, 102: 1-14.
  • 3V Barbu, M Iannelli, M Martcheva. On the controllability of the Lotka-McKendrick model of population dynamics, J Math Anal Appl, 2001, 253: 142-165.
  • 4F Brauer. Constant-rate harvesting of age-structured populations, SIAM J Math Anal, 1983, 14: 947-961.
  • 5B Ebenman, L Persson. Size-Structured Populations: Ecology and Evolution, Springer-Verlag, Berlin/Heidelberg/New York/London, 1988.
  • 6J Z Farkas, T Hagen. Stability and regularity results for a size-structured population model, J Math Anal Appl, 2007, 328: 119-136.
  • 7K P Hadeler, J Muller. Optimal harvesting and optimal vaccination, Math Biosci, 2007, 206: 249-272.
  • 8Z R He. Optimal birth control of age-dependent competitive species, J Math Anal Appl, 2004, 296: 286-301.
  • 9Z RHe. Optimal birth control of age-dependent competitive species H. Free horizon problems, J Math Anal Appl, 2005, 305: 11-28.
  • 10Z R He. Optimal harvesting of two competing species with age dependence, Nonlinear Anal RWA 2006, 7: 769-788.

同被引文献28

引证文献6

二级引证文献12

;
使用帮助 返回顶部