期刊文献+

A multiple maneuvering targets tracking algorithm based on a generalized pseudo-Bayesian estimator of first order 被引量:1

A multiple maneuvering targets tracking algorithm based on a generalized pseudo-Bayesian estimator of first order
原文传递
导出
摘要 We describe the design of a multiple maneuvering targets tracking algorithm under the framework of Gaussian mixture probability hypothesis density(PHD) filter.First,a variation of the generalized pseudo-Bayesian estimator of first order(VGPB1) is designed to adapt to the Gaussian mixture PHD filter for jump Markov system models(JMS-PHD).The probability of each kinematic model,which is used in the JMS-PHD filter,is updated with VGPB1.The weighted sum of state,associated covariance,and weights for Gaussian components are then calculated.Pruning and merging techniques are also adopted in this algorithm to increase efficiency.Performance of the proposed algorithm is compared with that of the JMS-PHD filter.Monte-Carlo simulation results demonstrate that the optimal subpattern assignment(OSPA) distances of the proposed algorithm are lower than those of the JMS-PHD filter for maneuvering targets tracking. We describe the design of a multiple maneuvering targets tracking algorithm under the framework of Oaussian mixture probability hypothesis density (PHD) filter. First, a variation of the generalized pseudo-Bayesian estimator of first order (VGPB1) is designed to adapt to the Gaussian mixture PHD filter for jump Markov system models (JMS-PHD). The probability of each kinematic model, which is used in the JMS-PHD filter, is updated with VGPB1. The weighted sum of state, associated covariance, and weights for Gaussian components are then calculated. Pruning and merging techniques are also adopted in this algorithm to increase efficiency. Performance of the proposed algorithm is compared with that of the JMS-PHD filter. Monte-Carlo simulation results demonstrate that the optimal subpattern assignment (OSPA) distances of the proposed algorithm are lower than those of the JMS-PHD filter for maneuvering targets tracking.
出处 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2013年第6期417-424,共8页 浙江大学学报C辑(计算机与电子(英文版)
基金 Project supported by the National Natural Science Foundation of China(Nos.61175008,60935001,and 61104210) the Aviation Foundation(No.20112057005) the National Basic Research Program(973) of China(No.2009CB824900)
关键词 Gaussian mixture PHD filter Jump Markov system Generalized pseudo-Bayesian estimator of first order(GPB1) Multi-target tracking Gaussian mixture PHD filter, Jump Markov system, Generalized pseudo-Bayesian estimator of firstorder (GPB1), Multi-target tracking
  • 相关文献

参考文献15

  • 1Bar-Shalom, Y., Chang, K.C., Blom, H.A.P., 1989. Tracking a maneuvering target using input estimation versus tile interacting multiple model algorithm. IEEE Trans. Aerosp. Electron. Syst., 25(2):296-300. [doi:10.1109/7. 18693].
  • 2Bar-Shalom, Y., Li, X.R., Kirubarajan, T., 2001. Esti- mation with Applications to Tracking and Navigation. John Wiley & Sons, Inc., New York, USA. [doi:10.1002/ 0471221279].
  • 3Blom, H.A.P., Bar-Shalom, Y., 1988. The interacting nmlti- ple model algorithm for systems with Markovian switch- ing coefficients. IEEE Trans. Automatic Control, 33(8):780-783. [doi:10.1109/9.1299].
  • 4Li, X.R., Jilkov, V.P., 2003. Survey of maneuvering tar- get tracking. Part I: dynamic models. IEEE Trans. Aerosp. Electron. Syst., 39(4):1333-1364. ]doi:10.1109/ TAES.2003.1261132].
  • 5Mahler, R.P.S., 2003. Multitarget Bayes filtering via first- order multitarget moments. 1EEE Trans. Aerosp. Elec- tron. Syst., 39(4):1152-1178. [doi:10.1109/TAES.2003. 1261119].
  • 6Matller, R.P.S., 2007. Statistical Multisource Multitarget Information Fusion. Artech House, Norwood, MA.
  • 7Pasha, S.A., Vo, B.N., Tuan, H.D., Ma, W.K., 2009. A Gaussian mixture PHD filter for jump Markov sys- tem models. IEEE Trans. Aerosp. Electron. Syst., 45(3):919-936. [doi:10.1109/TAES.2009.5259174].
  • 8Pollard, E., Pannetier, B., Rombaut, M., 2011. Hybrid Mgorithms for multitarget tracking using MtlT and GM-CPHD. IEEE Trans. Aerosp. Electron. Syst., 47(2):832-847. [doi:10. ll09/TAES.2011.5751229].
  • 9Schuhmacher, D., Vo, B.T., Vo, B.N., 2008. A consistent metric for performance evaluation of nmlti-object ill- ters. IEEE Trans. Signal Process., 56(8):3447-3457. ]doi: 10.1109/TSP.2008.920469].
  • 10Vo, B.N., Ma, W.K., 2006. The Gaussian mixture prohahility hypothesis density filter. IEEE Trans. Signal Process., 54(11):4091-4104. Idol: 10.1109/TSP.2006.881190].

同被引文献14

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部