期刊文献+

云环境下基于超球面投影分区的Skyline计算 被引量:5

Distributed Skyline Processing Based on Hypersphere Projection Partitioning on Cloud Environments
下载PDF
导出
摘要 目前,Skyline查询在集中式数据库、分布式数据库、数据流及分类属性数据集上的良好应用前景,使其成为当前数据库界研究的重点和热点之一,受到了学术界和工业界的广泛关注,它作为一种重要的数据挖掘技术广泛应用于多目标优化、城市导航系统、用户偏好查询及约束决策、智能防御系统以及地理信息系统等领域。随着人类可以采集和利用的数据信息的急剧增长,如何处理大数据的Skyline查询成为急需解决的问题。针对云计算环境,在Map-Reduce框架下设计并实现了基于超球面投影分区的分布式Skyline算法HSPD-Skyline,其主要思想是通过对高维数据点的超平面投影映射,即由空间坐标转换为超球面坐标,可以有效提高分区内数据点的平均减枝力度,降低Skyline的计算代价。同时,使用基于空间分区树的启发式策略HA-SPT,进一步提高了HSPD-Skyline算法的处理效率。通过详细的理论分析和实验验证表明,在不考虑数据分布和进一步优化算法的条件下,提出的HSPD-Skyline算法的总体性能(可扩展性、Skyline查询时间等)优于同类算法。 Recently, skyline processing has been receiving considerable attention due to its potential applications in many fields, including traditional database, distributed database, data stream and even the categorical database and so on. Both the academic and the industrial have paid much attention to it. As an important data mining technique, skyline proces- sing is of great significance for multi-objective optimization, urban navigation, multi-criteria decision making and prefe- rence query, trip planning, defense and intelligence systems and geographic information systems. In addition, the amount of data collected and used by human is developing at an astonishing speed. Therefore, how to process Skyline query of massive data is an urgent problem. Aiming at cloud computing applications, this paper designed and implemented dis- tributed Skyline processing based on hypersphere projection partitioning under the Map-Reduce framework, HSPD-Sky- line. It is showed that partitioning the data according to the hyperspherieal coordinates can increase the average pruning power of points within a partition, and reduce the cost of Skyline processing. The HSPD-Skyline algorithm also uses a heuristic strategy based on space partitioning tree, HA-SPT,to further improve the processing efficiency of the HSPD- Skyline algorithm. Finally, the theoretical analysis and experiment results illustrate that the HSPD-Skyline algorithm (Distributed Skyline Processing based on Hypersphere Projection Partitioning) consistently outperforms similar approa- ches for distributed skyline computation, regardless of data distribution, and further optimization strategies.
出处 《计算机科学》 CSCD 北大核心 2013年第6期164-171,共8页 Computer Science
基金 基于大规模复杂结构知识库的知识发现机理、模型与算法研究(60875029) 多关系频繁模式挖掘模型、方法与一般架构的研究(60675030) 基于多关系的模糊认知图挖掘模型、算法与评价机制研究(61175048)资助
关键词 分布式Skyline计算 Map-Reduce框架 分区策略 HSPD-Skyline算法 Distributed Skyline processing, Map-Reduce frame, Partitioning strategy, HSPD-Skyline
  • 相关文献

参考文献34

  • 1Kung H T,Luccio F,Preparata F P.On finding the maxima of a set of vectors[J].Journal of the ACM,1975,22(4):469-476.
  • 2Borzsonyi S,Kossmann D,Stocker K.The skyline operator[C]//Proc.of the 17th Int'l Conf.on Data Engineering.Heidelberg,IEEE Computer Society Press,2001:421-430.
  • 3Chomicki J,Godfrey P,Gryz J,et al.Skyline with presorting[C]//Proc.of the 19th International Conference on Data Engineering (ICDE 2003).2003:717-816.
  • 4Tan K-L,Eng P-K,Ooi B C.Efficient progressive skyline com putation[C]// Proc.of the 27th International Conference on Very Large Data Bases(VLDB 2001).2001:301-310.
  • 5Godfrey P,Shipley R,Gryz J.Maximal vector computation in large data sets[C]//Proc.of the 31st international conference on Very large data bases(VLDB 2005).2005:229-240.
  • 6Kossmann D,Ramsak F,Rost S.Shooting stars in the sky:an online algorithm for skyline queries[C]//Proceedings of the 28th International Conference on Very Large Data Bases.2002:275-286.
  • 7周红福,宫学庆,郑凯,周傲英.基于高维空间的在线高效子空间Skyline算法——CSky[J].计算机学报,2007,30(8):1409-1417. 被引量:8
  • 8程文聪,邹鹏,贾焰.基于小波概要的区间差分skyline研究[J].计算机科学,2010,37(11):160-165. 被引量:1
  • 9付世昌,董一鸿,陈华辉,钱江波.基于道路网络不确定移动对象的连续概率Skyline查询[J].计算机科学,2011,38(7):152-156. 被引量:5
  • 10Balke W-T,Güntzer U,Zheng J X.Efficient distributed skylining for web information systems[C]//Proc.of the 9th International Conference on Extending Database Technology (EDBT 2004).2004:256-273.

二级参考文献61

  • 1周红福,宫学庆,郑凯,周傲英.基于高维空间的在线高效子空间Skyline算法——CSky[J].计算机学报,2007,30(8):1409-1417. 被引量:8
  • 2Chomicki J, Godfrey P, Gryz J, et al. Skyline with pre- sorting[C]//Proceedings of the 19th International Confer- ence on Data Engineering (ICDE), Los Alamitos, CA, USA, 2003. Washington, DC, USA: IEEE Computer Society, 2003: 717-719.
  • 3Tan K L, Eng P K, Ooi B C. Efficient progressive Skyline computation[C]//Proceedings of the 27th International Conference on Very Large Data Bases (VLDB), 2001. San Francisco, CA, USA: Morgan Kaufmann, 2001:301-310.
  • 4Kossmann D, Ramsak F, Rost S. Shooting stars in the sky an online algorithm for Skyline queries[C]//Proceedings of the 28th International Conference on Very Large Data Bases (VLDB), Hong Kong, China, 2002. San Francisco, CA, USA: Morgan Kaufmann, 2002: 275-286.
  • 5Papadias D, Tao Y, Fu G, et al. Progressive Skyline com- putation in database systems[J]. ACM Transactions on Database Systems, 2005, 30(1): 41-82.
  • 6Chan C Y, Jagadish H V, Tan K L, et al. Finding k-dominant Skylines in high dimensional space[C]//Pro- ceedings of the 25th ACM SIGMOD International Con- ference on Management of Data, Chicago, Illinois, USA, 2006. New York, NY, USA: ACM, 2006: 503-514.
  • 7Lin X, Yuan Y, Wang W, et al. Stabbing the sky: efficient Skyline computation over sliding windows[C]//Procee- dings of the 21st International Conference on Data Engi- neering (ICDE), Tokyo, Japan, 2005. Washington, DC, USA: IEEE Computer Society, 2005:502-513.
  • 8Balke W T, Guntzer U, Zheng J X. Efficient distributed skylining for Web information systems[C]//Proceedings of the 9th International Conference on Extending Data- base Technology (EDBT), Heraklion, Crete, Greece, 2004 [S.l.]: Springer, 2004: 256-273.
  • 9Wang S, Beng Chin Ooi, Tung A K H, et al. Efficient Skyline query processing on peer-to-peer networks[C]// Proceedings of the 23rd International Conference on Data Engineering (ICDE), Istanbul, Turkey, 2007. Washington, DC, USA: IEEE Computer Society, 2007:1126-1135.
  • 10Deng K, Zhou X, Shen H. Multi-source Skyline query processing in road networks[C]//Proceedings of the 23rd International Conference on Data Engineering (ICDE), lstanbul, Turkey, 2007. Washington, DC, USA: IEEE Computer Society, 2007: 796-805.

共引文献59

同被引文献55

  • 1Borzsonyi S,Kossmann D,Stocker K.The Skyline operator.Proceedings of the International Conference on Data Engineering(ICDE),Heidelberg,Germany,2001:421-430
  • 2Dean J,Ghemawat S.MapReduce:simplified data processing on large clusters.Communications of the ACM,2005,51(1):107-113
  • 3Tan K L,Eng P K,Ooi B C.Efficient progressive skyline computation.Proceedings of the VLDB,Roma,Italy,2001:301-310
  • 4Kossmann D,Ramsak F,Rost S.Shooting stars in the sky:an online algorithm for skyline queries.Proceedings of the Very Large Data Bases(VLDB),Hong Kong,China,2002:275-286
  • 5Papadias D,Tao Y F,Fu G,et al.An optimal and progressive algorithm for skyline queries.Proceedings of ACM Management of Data(SIGMOD),San Diego,California,USA,2003:467-478
  • 6Balke W T,Güntzer U,Zheng J X.Efficient distributed Skylining for web information systems.Proceedings of International Conference on Extending Database Technology(EDBT),Heraklion,Crete,Greece,2004:256-273
  • 7Cui B,Lu H,Xu Q Q,et al.Parallel distributed processing of constrained Skyline queries by ltering.Proceedings of International Conference on Data Engineering(ICDE),Cancun,Mexico,2008:546-555
  • 8Huang Z Y,Lu H,Ooi B C,et al.Continuous skyline queries for moving objects.IEEE Transactions on Knowledge and Data Engineering,2006,18(12):1645-1658
  • 9Tian L,Wang L,Zou P,et al.Continuous monitoring of skyline query over highly dynamic moving objects.Proceedings of the AC M International Workshop on Data Engineering for Wireless and Mobile Access,Beijing,China,2007:59-66
  • 10Vlachou A,Doulkeridis C,Kotidis Y.Angle-based space partitioning for efficient parallel skyline computation.Proceedings of ACM Management of Data(SIGMOD),Vancouver,BC,Canada,2008:227-238

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部