期刊文献+

Traveling Waves for 2-1 Dimension Lattice Difference Equations 被引量:1

Traveling Waves for 2-1 Dimension Lattice Difference Equations
下载PDF
导出
摘要 A definition is introduced about traveling waves of 2-1 dimension lattice difference equations. Discrete heat equation is introduced and a discussion is given for the existence of traveling waves. The theory of traveling waves is extended on 2-1 dimension lattice difference equations. As an application, an example is presented to illustrate the main results. A definition is introduced about traveling waves of 2-1 dimension lattice difference equations. Discrete heat equation is introduced and a discussion is given for the existence of traveling waves. The theory of traveling waves is extended on 2-1 dimension lattice difference equations. As an application, an example is presented to illustrate the main results. Key. words: traveling waves; lattice difference equations; discrete heat equation
出处 《Chinese Quarterly Journal of Mathematics》 CSCD 2013年第2期214-223,共10页 数学季刊(英文版)
基金 Supported by the National Natural Science Foundation of China(Ill61049)
关键词 traveling waves lattice difference equations discrete heat equation traveling waves lattice difference equations discrete heat equation
  • 相关文献

参考文献16

  • 1CHOW S N. Lattice Dynamical Systems, in: Dynamical Systems, Lecture Notes in Mathematics[M]. Berlin: Springer,2003: 1-102:.
  • 2MALLER P J. Traveling Waves in Spatially Discrete Dynamical Systems of Diffusive Type, in: Dynamical Systems, Lecture Notes in Mathematics[M]. Berlin: Springer, 2003: 231-298.
  • 3WAZWAZ A M, MONA S, MEHANNA. A variety of exact traveling wave solutions for the (2+ I)-dimensional Boiti-Leon-Pempinelli equation[J]. Applied Mathematics and Computation, 2010, 217: 1484"1490.
  • 4DAI Chao-qing, CEN Xu, WU Sheng-sheng. Exact traveling wave solutions of the discrete sine Gordon equation obtained via the exp-function methodj.I], Nonlinear Analysis, 2009, 70: 58-63.
  • 5HUANG .Iian-hua, LU Gang, RUAN Shi-gui. Traveling wave solutions in delayed lattice differential equa?tions with partial monotonicity[J]. Nonlinear Analysis, 2005, 60: 1331-1350.
  • 6CHOW S N, MALLET J P, SHEN W. Traveling waves in lattice dynamical systems[J]. J Differential Equations, 1998, 149: 248-29l.
  • 7MALLET J P. The global structure of traveling .waves in spatially discrete dynamical systems[J]. Journal of Dynamics and Differential Equations, 1999, 11(1): 49-127.
  • 8AFTRAIMOVICH V, PESIN Y. Traveling waves in lattice models of multi-dimensional and multi-component media[J]. I General Hyperbolic Properties, Nonlinearity, 1993,6(3): 429-455.
  • 9ALEXANDER J C, AUCHMUTY G. Bifurcation analysis of reaction-diffusion equations VI multiply peri?odic traveling waves[J]. SIAM J Math Anal, 1988, 19(1): 100-109.
  • 10BRITTON N F. Spatial structures 'and periodic traveling waves in an integro-differential reaction diffusion population model[J]. SIAM J Appl Math, 1990, 50(6): 1663-1688.

同被引文献7

  • 1Bell J,Cosner C.Threshold behavior and propagation for nonlinear differential-difference systems motivated by modeling myelinated axons[J].Quart Appl Math,1984,42:1-14.
  • 2Britton N F.Traveling wave front solutions of a differential-difference equation arising in the modeling of myelinated nerve axon[J].Ordinary and Partial Differential Equations,Lecture Notes in Mathematics,2006,1151(1985):77-89.
  • 3Chi H,Bell J,Hassard B.Numerical solutions of a nonlinear advanced-delay differential equation from nerve condition theory[J].J Math Biol,1986,24:583-601.
  • 4Shao Yuanhuang,Sui Suncheng.Existence of periodic traveling wave solutions of non-autonomous reaction-diffusion equations with lambda-omega type[J].J Math Anal Appl,2014,409:607-613.
  • 5Zinner B.Existence of traveling wavefront solutions for the discrete Nagumo equation[J].J Differ Eq,1992,96:1-27.
  • 6Fu S C,Guo J S,Shieh S Y.Traveling wave solutions for some discrete quasilinear parabolic equations[J].Nonlinear Anal,2002,48:1137-1149.
  • 7Wu J,Zou X.Asymptotic and periodic boundary value problems of mixed FDEs and wave solutions of lattice differential equations[J].J Differ Eq,1997,135:315-357.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部