期刊文献+

改进的小波变换阈值去噪算法 被引量:3

An Improved Wavelet Thresholding Denoising Algorithm
下载PDF
导出
摘要 针对硬阈值函数在阈值点不连续,软阈值函数中估计的小波系数与信号的小波系数之间存在着恒定偏差的缺陷,构造了一种新的阈值函数,仿真结果显示,该方法具有较好的去噪结果。 The hard threshold function is discontinuous on the threshold value, and there are some disadvantages in soft threshold function. So a new threshold function is produced to overcome the shortcomings. And the Simulation results indicate that the new method has improved the effect of denoising.
作者 刘丽娜
出处 《工业技术与职业教育》 2013年第2期12-14,共3页 Industrial Technology and Vocational Education
关键词 去噪 硬阈值法 软阈值法 denoising hard threshold value method soft threshold value method
  • 相关文献

参考文献6

  • 1Rioul O,Vettertui M. Wavelets and signal processing[J].IEEE Trans on SP Mag,1999,(10):14-38.
  • 2谢杰成,张大力,徐文立.小波图象去噪综述[J].中国图象图形学报(A辑),2002,7(3):209-217. 被引量:254
  • 3Pan Quan,Zhang Pan,Dai Guangzhong. Two denoising methods by wavelet transform[J].{H}IEEE Transactions on Signal Processing,1999,(12):3401-3406.
  • 4Chang S G,Yu Bin,Vetterli M. adaptive wavelet thresholding for image denoising and comopression[J].{H}IEEE Transactions on Image Processing,2000,(09):1532-1546.
  • 5Moulin P,Liu J. Analysis of multiresolution image denoising schemes using Generalized-Gaussian and complexity priors[J].{H}IEEE Transactions on Information Theory,1999,(03):909-919.
  • 6彭玉华.信号在多尺度空间的滤波[J].通信学报,2000,21(10):58-61. 被引量:6

二级参考文献67

  • 1[9]You Yuli, Kaveh D. Fourth-order partial differential equations for noise removal[J]. IEEE Trans. Image Processing, 2000,9(10):1723~1730.
  • 2[10]Bouman C, Sauer K. A generalized Gaussian image model of edge preserving map estimation[J]. IEEE Trans. Image Processing, 1993,2(3):296~310.
  • 3[11]Ching P C, So H C, Wu S Q. On wavelet denoising and its applications to time delay estimation[J]. IEEE Trans. Signal Processing,1999,47(10):2879~2882.
  • 4[12]Deng Liping, Harris J G. Wavelet denoising of chirp-like signals in the Fourier domain[A]. In:Proceedings of the IEEE International Symposium on Circuits and Systems[C]. Orlando USA, 1999:Ⅲ-540-Ⅲ-543.
  • 5[13]Gunawan D. Denoising images using wavelet transform[A]. In:Proceedings of the IEEE Pacific Rim Conference on Communications, Computers and Signal Processing[C]. Victoria BC,USA, 1999:83~85.
  • 6[14]Baraniuk R G. Wavelet soft-thresholding of time-frequency representations[A]. In:Proceedings of IEEE International Conference on Image Processing[C]. Texas USA,1994:71~74.
  • 7[15]Lun D P K, Hsung T C. Image denoising using wavelet transform modulus sum[A]. In:Proceedings of the 4th International Conference on Signal Processing[C]. Beijing China,1998:1113~1116.
  • 8[16]Hsung T C, Chan T C L, Lun D P K et al. Embedded singularity detection zerotree wavelet coding[A].In:Proceedings of IEEE International Conference on Image Processing[C]. Kobe Japan, 1999:274~278.
  • 9[17]Krishnan S, Rangayyan R M. Denoising knee joint vibration signals using adaptive time-frequency representations[A]. In:Proceedings of IEEE Canadian Conference on Electrical and Computer Engineering 'Engineering Solutions for the Next Millennium[C]. Alberta Canada, 1999:1495~1500.
  • 10[18]Liu Bin, Wang Yuanyuan, Wang Weiqi. Spectrogram enhancement algorithm: A soft thresholding-based approach[J]. Ultrasound in Medical and Biology, 1999,25(5):839~846.

共引文献258

同被引文献10

引证文献3

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部