期刊文献+

基于Tri-Training半监督分类算法的研究 被引量:9

Research of Semi-supervised Classification Algorithm Based on Tri-Training
下载PDF
导出
摘要 在实际应用中,容易获取大量的未标记样本数据,而样本数据是有限的,因此,半监督分类算法成为研究者关注的热点。文中在协同训练Tri-Training算法的基础上,提出了采用两个不同的训练分类器的Simple-Tri-Training方法和对标记数据进行编辑的Edit-Tri-Training方法,给出了这三种分类方法与监督分类SVM的分类实验结果的比较和分析。实验表明,无标记数据的引入,在一定程度上提高了分类的性能;初始训练集和分类器的选取以及标记过程中数据编辑技术,都是影响半监督分类稳定性和性能的关键点。 In many practical applications,it is easy to obtain the unlabeled training samples, but labeled ones are limited. Therefore, semisupervised classification algorithms have attached much attention. Based on the co-training style semi-supervised algorithm of Tri-Train- ing,proposed the Simple-Tri-Training method through adopting two different training classifiers and Edit-Tri-Training method with data editing to reduce the number of mislabeled data. It also gave three methods classification results and analysis compared with the super- vised classification SVM method. The experiments showed the unlabeled data can improve the performance of classification in some extent. Selection of initial training data and the base classifiers, and data editing of labeling are the key points to improve stability and per- formance of semi-supervised algorithm.
出处 《计算机技术与发展》 2013年第7期77-79,83,共4页 Computer Technology and Development
基金 云南省教育科研基金资助项目(2010Y290)
关键词 半监督分类 Tri—Training算法 数据编辑 semi-supervised classification Tri-Training algorithm data editing
  • 相关文献

参考文献12

  • 1Zhu X. Semi-supervised learning literature survey[ R]. Madi- son : University of Wisconsin ,2008.
  • 2Zhou Zhihua, Zhan Dechuan, Yang Qiang. Semi-supervised Learning with Very Few Labeled Training Examples [ C ]// Proceedings of the 22nd AAAI Conference on Artificial Intelli- gence (AAAI-07). Vancouver, British Columbia, Canada:[ s. n. ] ,2007:675-680.
  • 3梁吉业,高嘉伟,常瑜.半监督学习研究进展[J].山西大学学报(自然科学版),2009,32(4):528-534. 被引量:32
  • 4徐庆伶.基于半监督学习的遥感图像分类研究[D].西安:陕西师范大学,2010.
  • 5Seeger M. Learning with labeled and unlabeled data [ R ]. Ed- inburgh : University of Edinburgh ,2002.
  • 6Blum A, Mitchell T. Combining labeled and unlabeled data with co-training[ C ]//Proceedings of the 11 th Annual Confer- ence on Computational Learning Theory. Madison, WI: [ s. n. ], 1998:92-100.
  • 7Zhou Zhihua, Li M. Tri-Training: exploiting unlabeled data u- sing three classifiers [ J ]. IEEE Transactions on Knowledgeand Data Engineering,2005,17 ( 11 ) : 1529-1541.
  • 8李昆仑,张伟,代运娜.基于Tri-training的半监督SVM[J].计算机工程与应用,2009,45(22):103-106. 被引量:15
  • 9徐庆伶,汪西莉.一种基于支持向量机的半监督分类方法[J].计算机技术与发展,2010,20(10):115-117. 被引量:18
  • 10邓超,郭茂祖.基于Tri-Training和数据剪辑的半监督聚类算法[J].软件学报,2008,19(3):663-673. 被引量:30

二级参考文献47

共引文献88

同被引文献60

  • 1邓超,郭茂祖.基于自适应数据剪辑策略的Tri-training算法[J].计算机学报,2007,30(8):1213-1226. 被引量:15
  • 2Ahlswede R,Cai N,Li SYR,et al.Network information flow[J].IEEE Trans on Information Theory,2000,46(04):1204-1216.
  • 3Wang Y,Chen S,Zhou Z H. New Semi-supervisedClassification Method Based on Modified Cluster As-sumption[J]. IEEE Transactions on Neural Networksand Learning Systems,2012,23(5) : 689-702.
  • 4Shen W, Wu G,Sun Z,et al. Study on Classifica-tion Methods of Remote Sensing Image Based onDecision Tree Technology[C]. IEEE InternationalConference on Computer Science and Service System(CSSS), Nanjing ,China,2011.
  • 5Niu D,Wang F, Chang Y, et al. An ImprovedMulti-objective Differential Evolution Algorithm[C]. The 24th IEEE Chinese Control and DecisionConference (CCDC) ^ Taiyuan .China .2012.
  • 6Yan W. Yang W, Sun H, et al. Unsupervised Classi-fication of PolInSAR Data lia.sed on Shannon EntropyCharacterization with Iterative C)ptimization[J]. IEEEJoumal of Selected Topics in Applied Earth (hserva-tions and. Remote Se.ising , 2011,4(4) : 949-959.
  • 7Wang Y, Chen S. Safety-Aware Semi-SupervisedClassification [J]. IEEE Trafisactiotis on NeuralNetworks and Leaming Systems. 2013, 24(11):1 763-1 772.
  • 8Wang Y, Chen S,Zhou Z H. New Semi-SupervisedClassification Method Based on Modified ClusterAssumption [ J ]. IEEE Transactions on NeuralNetworks and Learning Systems, 2012. 23(5):689-702.
  • 9Xiong B, Jiang W,Zhang F. Semi-Supervised Clas-sification Considering Space and Spectrum Con-straint for Remote Sensing Imagery[Cj. The 18thIEEE International Conference on Geoinformatics,Beijing,China ,2010.
  • 10Dopido I,Li J,Plaza A,et al. Semi-SupervisedClassification of Hyperspectral Data Using SpectralUnmixing Concepts [C]. IEEE Tyrrhenian Work-shop on Advances in Radar and Remote Sensing(TyWRRS) . Naples,Italia,2012.

引证文献9

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部