摘要
针对污水处理过程(Wastewater treatment process,WWTP)溶解氧(Dissolved oxygen,DO)及硝态氮浓度控制问题,提出了一种多评价指标的DHP(Dual heuristic dynamic programming)控制策略.该策略能够降低评价指标的复杂性,提高评价网络的逼近精度.采用回声状态网络(Echo state networks,ESNs)实现评价函数及控制策略的逼近,研究了控制器的在线学习算法.实验表明,该策略在控制性能上优于单评价指标的DHP策略及常规PID控制策略.
In order to solve the problem of controlling dissolved oxygen(DO) concentration and nitrate concentration of waster-water treatment process(WWTP),a multi critic indices dual heuristic dynamic programming(MDHP) policy is proposed.The approximating precision can be improved through lowering the complexity between the relationship of the critic network s outputs and inputs in this scheme.Echo state networks(ESNs) are adopted to approximate the critic indices and the optimal control policy.Online learning method of the controller is inves-tigated.Experimental results indicate that the MDHP scheme has some advantages over single critic index DHP(SDHP) and PID in control performance.
出处
《自动化学报》
EI
CSCD
北大核心
2013年第7期1146-1151,共6页
Acta Automatica Sinica
基金
国家自然科学基金(61034008)
教育部博士点基金(200800050004)
北京市自然科学基金(4092010)资助~~
关键词
自适应动态规划
多评价指标
污水处理
回声状态网络
Adaptive dynamical programming(ADP)
multi evaluation indices
wastewater treatment
echo state network(ESN)