摘要
设n为正整数,F.Smarandache LCM函数SL(n)和函数SM(n)定义为:SL(1)=1,SM(1)=1,当n>1,并且n的标准分解式为n=p1α1p2α2…pkαk时,SL(n)=max1≤i≤k{pαi i},SM(n)=max1≤i≤k{αi.pi},利用初等方法及素数的分布性质研究函数(SL(n)-SM(n))2的均值性质,并给出了一个有趣的渐近公式。
Let n be a positive integer, Smarandache LCM function and Smarandache function SM(n) are defined as follows: SL( 1 ) = 1 ,SM( 1 ) = 1 ,SL(n)=max1≤i≤k{piαi} and SM(n)=max1≤i≤k{αi·pi} when n〉1 and n can be factorized as n=p1α1p2α2…pkαk. A hybrid mean value problem of the function (SL(n) -SM(n) )2 is studied and an interesting asymptotic formula is given by using the elementary method and the distribution property of prime numbers.
出处
《黑龙江大学自然科学学报》
CAS
北大核心
2013年第3期318-320,共3页
Journal of Natural Science of Heilongjiang University
基金
陕西省自然科学基础研究计划资助项目(2009JQ1009)
咸阳师范学院专项科研基金资助项目(10XSYK109)