期刊文献+

关于Smarandache LCM函数及Smarandache函数SM(n)的混合均值 被引量:9

On the hybrid mean value of Smarandache LCM function and Smarandache function SM(n)
下载PDF
导出
摘要 设n为正整数,F.Smarandache LCM函数SL(n)和函数SM(n)定义为:SL(1)=1,SM(1)=1,当n>1,并且n的标准分解式为n=p1α1p2α2…pkαk时,SL(n)=max1≤i≤k{pαi i},SM(n)=max1≤i≤k{αi.pi},利用初等方法及素数的分布性质研究函数(SL(n)-SM(n))2的均值性质,并给出了一个有趣的渐近公式。 Let n be a positive integer, Smarandache LCM function and Smarandache function SM(n) are defined as follows: SL( 1 ) = 1 ,SM( 1 ) = 1 ,SL(n)=max1≤i≤k{piαi} and SM(n)=max1≤i≤k{αi·pi} when n〉1 and n can be factorized as n=p1α1p2α2…pkαk. A hybrid mean value problem of the function (SL(n) -SM(n) )2 is studied and an interesting asymptotic formula is given by using the elementary method and the distribution property of prime numbers.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2013年第3期318-320,共3页 Journal of Natural Science of Heilongjiang University
基金 陕西省自然科学基础研究计划资助项目(2009JQ1009) 咸阳师范学院专项科研基金资助项目(10XSYK109)
关键词 SMARANDACHE LCM函数 SMARANDACHE可乘函数 均值 渐近公式 Smarandache LCM function Smarandache muhiplicative function mean value asymptotic formula
  • 相关文献

参考文献7

二级参考文献24

  • 1Chen Jianbin.Value distribution of the F.Smarandache LCM function[J].Scientia Magna.2007,3(2):15-18.
  • 2Murthy A.Some notions on least common multipies[J].Smarandache Notions Journal.2001.12:307-309.
  • 3LE Mao-hua.Two function equations[J].Smarandache Notions Journal.2004.14:180-182.
  • 4Lu Zhongtian.On the F.Smarandache LCM function and its mean value[J].Scientia Magna.2007.3(1):22-25.
  • 5Ge Jian.Mean value of the F.Smarandache LCM function[J].Scientia Magna.2007.3(2):109-112.
  • 6Apostol T M.Introduction to Analytic Number Theory[M].New York:Springer-Verlag.1976.
  • 7Kenichiro Kashihara.Comments and topics on Smarandache notions and problems[M].Erhus University Press.USA.1996.
  • 8Balacenoiu I,Seleacu V.History of the Smarandache function[J].Smarandache Notions Journal,1999.10(1/2/3);192-201.
  • 9CHEN Jianbin.Value distribution of the F.Smarandache LCM function[J].Scientia Magna,2007,3(2):15-18.
  • 10MURTHY A.Some notions on least common multipies[J].Smarandache Notions Journal,2001,12:307-309.

共引文献13

同被引文献47

引证文献9

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部