摘要
A complete case of a deep excavation was explored. According to the practical working conditions, a 3D non-linear finite element procedure is used to simulate a deep excavation supported by the composite soil nailed wall with bored piles in soft soil. The modified cam clay model is employed as the constitutive relationship of the soil in the numerical simulation. Results from the numerical analysis are fitted well with the field data, which indicate that the research approach used is reliable. Based on the field data and numerical results of the deep excavation supported by four different patterns of the composite soil nailed wall, the significant corner effect is founded in the 3D deep excavation. If bored piles or soil anchors are considered in the composite soil nailed wall, they are beneficial to decreasing deformations and internal forces of bored piles, cement mixing piles, soil anchors, soil nailings and soil around the deep excavation. Besides, the effects due to bored piles are more significant than those deduced from soil anchors. All mentioned above prove that the composite soil nailed wall with bored piles is feasible in the deep excavation.
深挖掘的一个完全的盒子被探索。根据实际工作条件, 3D 非线性的有限元素过程被用来模仿合成土壤支持的深挖掘有在软土壤的无聊的堆积的钉的墙。修改凸轮泥土模特儿在数字模拟作为土壤的组成的关系被雇用。从数字分析的结果与领域数据被适合很好,它显示使用的研究途径是可靠的。基于数据和钉的合成土壤的四个不同模式支持的深挖掘的数字结果围的地,重要角落效果深在 3D 被成立挖掘。如果无聊的堆积或土壤锚在钉的合成土壤被认为墙,他们对减少的变丑和在深挖掘附近的无聊的堆积,混合堆积的水泥,土壤锚,土壤钉和土壤的内部力量有益。而且,效果由于无聊的堆积比从土壤锚推出的那些更重要。上面提及的所有证明合成土壤与无聊的堆积钉了墙在深挖掘是可行的。
基金
Foundation item: Project(2009-K3-2) supported by the Ministry of Housing and Urban-Rural Development of China