期刊文献+

Plasma Parameters of a Gliding Arc Jet at Atmospheric Pressure Obtained by a Line-Ratio Method

Plasma Parameters of a Gliding Arc Jet at Atmospheric Pressure Obtained by a Line-Ratio Method
下载PDF
导出
摘要 A generator of the gliding arc jet (GAJ), which is driven by a transverse magnetic field, is developed to produce non-equilibrium plasma at atmospheric pressure. The gas temperature is estimated using the spectrum of OH radicals to be about 2400±400 K. The determinations of electron temperature and electron density by using a line-ratio method are elaborated for the gliding arc jet plasma. This line-ratio method is based on a collisional-radiative model. The experiment results show that electron temperature is about 1.0 eV and electron density is about 6.9×1014 cm-3 . Obviously, the plasma of GAJ is in a non-equilibrium state. A generator of the gliding arc jet (GAJ), which is driven by a transverse magnetic field, is developed to produce non-equilibrium plasma at atmospheric pressure. The gas temperature is estimated using the spectrum of OH radicals to be about 2400±400 K. The determinations of electron temperature and electron density by using a line-ratio method are elaborated for the gliding arc jet plasma. This line-ratio method is based on a collisional-radiative model. The experiment results show that electron temperature is about 1.0 eV and electron density is about 6.9×1014 cm-3 . Obviously, the plasma of GAJ is in a non-equilibrium state.
作者 李辉 谢铭丰
出处 《Plasma Science and Technology》 SCIE EI CAS CSCD 2013年第8期776-779,共4页 等离子体科学和技术(英文版)
基金 supported by National Natural Science Foundation of China(Nos.10975136,11035005) USTC-NSRL Association Funding of China(No.KY2090130001)
关键词 GAJ line-ratio method collisional-radiative model (CRM) GAJ line-ratio method collisional-radiative model (CRM)
  • 相关文献

参考文献27

  • 1Durka T, Stefanidis G D, Van Gerven T, et al. 2011, International Journal of Hydrogen Energy, 36: 12843.
  • 2Rafiq M H, Hustad J E. 2011, Ind. Eng. Chern. Res., 50: 5428.
  • 3Janca J, Czernichowski A. 1998, Surface and Coatings Technology, 98: 1112.
  • 4Yang R, Zheng J, Li W, et al. 2011, J. Phys. D: Appl. Phys.,44: 174015.
  • 5Vandenbroucke A M, Morent R, Nathali D G, et al. 2011, Journal of Hazardous Materials, 195: 30.
  • 6Krawczyk K, Mlotek M. 2001, Applied Catalysis B: Environmental, 30: 233.
  • 7Ehlbeck J, Schnable U, Polak M, et al. 2011, J. Phys. D: Appl. Phys., 44: 013002.
  • 8Soukayna L, Michael K, Emmanuel 0. 2011, Advanced Materials Research, 324: 469.
  • 9Tomohiro N, Gutsol A. 2011, J. Phys. D: Appl, Phys., 44: 270301.
  • 10Lu X, Xiong Z, Zhao F, et al. 2009, Appl. Phys. Lett., 95: 181501.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部