期刊文献+

基于粒子群的改进模糊聚类图像分割算法 被引量:9

Improved fuzzy clustering image segmentation algorithm based on particle swarm optimization
下载PDF
导出
摘要 基于粒子群优化的改进模糊聚类图像分割算法将微粒群搜索聚类中心作为图像分割的聚类初值,克服了FCM分割算法对聚类中心初值敏感的缺点,大幅提高了图像分割算法的计算速度。改进的模糊聚类图像分割算法,一方面考虑到像素的空间位置信息和相互邻域之间像素有很大的相关性,在目标函数中引入邻域惩罚函数;另一方面提出聚类在二维方向上进行更新的思想,建立了包含邻域单元熵的新聚类目标函数。实验结果表明,该方法可以使模糊聚类的速度得到明显提高,对初始聚类中心不敏感,抗噪能力强,是一种有效的模糊聚类图像分割方法。 In improved fuzzy clustering image segmentation method based on Particle Swarm Optimization(PSO_TDFCM), the clustering centers searched by particle swarm are taken as image segmentation clustering initializations, which overcomes the sensitive to the clustering center initializations for Fuzzy C-Means (FCM) algorithm as well as improves the speed of FCM algorithm greatly. Meanwhile, on the one hand, the new idea taken into account the great correlation between the spatial site information of a pixel and it' s neighboring pixels, consequently, the neighboring penalized function is added in the objective function; on the other hand, it suggests to update the clustering centers at the two-dimension directions, from which the new objective function combines cell entropy. The results of comparative experiments demonstrate that this approach is an effective fuzzy clustering image segmentation algorithm, which can make a marked improvement in the speed of fuzzy clustering as well as insensitive to the initial clustering patters and robust to the noise.
作者 刘欢 肖根福
出处 《计算机工程与应用》 CSCD 2013年第13期152-155,共4页 Computer Engineering and Applications
基金 井冈山大学校级课题(No.JZ10011)
关键词 粒子群 模糊C均值聚类 图像分割 邻域信息 单元熵 particle swarm Fuzzy C-Means clustering(FCM) image segmentation neighboring information cell entropy
  • 相关文献

参考文献11

二级参考文献58

共引文献96

同被引文献72

  • 1翁和标,侯立刚,苏成利.基于改进QPSO算法的小波神经网络参数优化[J].辽宁石油化工大学学报,2013,33(4):91-94. 被引量:3
  • 2柳萍,阳爱民.一种基于区域的彩色图像分割方法[J].计算机工程与应用,2007,43(6):37-39. 被引量:9
  • 3唐敏,姜灵敏,阳爱民.一种基于区域模糊特征的图像检索方法[J].郑州大学学报(理学版),2007,39(2):122-127. 被引量:5
  • 4周新建,涂宏斌.基于改进的K-means聚类图像分割算法[J].无损检测,2007,29(5):258-261. 被引量:4
  • 5赵风.空川模糊图像聚类与改进谱聚类算法研究[D].西安两安电子科技大学,2010.
  • 6Bezdek J C.Cluster validity with fuzzy sets[J].Cybernetics and Systems, 1973,3(3) :58-73.
  • 7Fan J L,Zhcn W Z,Xie W X.Suppressed fuzzy C-means clustering algorithm[J].Pattern Recognition Letter, 2003, 24(9/10): 1607-1612.
  • 8Zhu L,Chung F L, Wang S T.Generalizcd fuzzy C-means clustering algorithm with improved fuzzy partitions[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B : Cybernetics, 2009,39( 3 ) : 578-591.
  • 9Ahmed M N, Yamant S M, Mohamed N, et al.A modified fuzzy C-means algorithm for bias field estimation and seg- mentation of MRI data[J].IEEE Transactions on Medical Imaging, 2002,21 (3) : 193-199.
  • 10Chen SC, Zhang DQ.Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure[J].IEEE Transactions on System, Man, and Cybernetics, Part B : Cybernetics, 2004,34(4) : 1907-1916.

引证文献9

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部