期刊文献+

Perfectly matched layer-absorbing boundary condition for finite-element time-domain modeling of elastic wave equations 被引量:3

时域有限元弹性波模拟中的位移格式完全匹配层吸收边界(英文)
下载PDF
导出
摘要 The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-element time-domain numerical modeling of elastic wave equation. However, the finite-element time-domain scheme is based on the second- order wave equation in displacement formulation. Thus, the first-order PML in velocity-stress formulation cannot be directly applied to this scheme. In this article, we derive the finite- element matrix equations of second-order PML in displacement formulation, and accomplish the implementation of PML in finite-element time-domain modeling of elastic wave equation. The PML has an approximate zero reflection coefficients for bulk and surface waves in the finite-element modeling of P-SV and SH wave propagation in the 2D homogeneous elastic media. The numerical experiments using a two-layer model with irregular topography validate the efficiency of PML in the modeling of seismic wave propagation in geological models with complex structures and heterogeneous media. 完全匹配层是地震波方程数值模拟中一种高效的吸收边界条件,本文目的在于将这种技术用于时域有限元弹性波数值模拟中。但时域有限元法是基于二阶位移格式的波动方程的数值模拟方法,所以一阶速度-应力格式的完全匹配层不能直接用于该数值模拟方法中。本文推导了二阶位移格式完全匹配层的有限元矩阵方程,实现了完全匹配层在时域有限元弹性波模拟中的应用。在二维均匀弹性介质P-SV波和SH波传播的有限元模拟中,完全匹配层对体波和面波具有近似零反射系数;不规则地表双层介质模型的数值实验验证了完全匹配层在复杂构造非均质地质模型中地震波传播模拟的效果。
出处 《Applied Geophysics》 SCIE CSCD 2013年第3期323-336,359,共15页 应用地球物理(英文版)
基金 sponsored by the National Natural Science Foundation of China Research(Grant No.41274138) the Science Foundation of China University of Petroleum(Beijing)(No.KYJJ2012-05-02)
关键词 Absorbing boundary condition elastic wave equation perfectly matched layer finite-element modeling 吸收边界条件 弹性波方程 完全匹配层 有限元数值模拟
  • 相关文献

参考文献28

  • 1Bao, H., Bielak, J., Ghattas, O., Kallivokas, L. F., O' Hallaron, D. R., Shewchuk, J. R., and Xu, J., 1998, Large-scale simulation of elastic wave propagation in heterogeneous media on parallel computers: Computer Methods in Applied Mechanics and Engineering, 152, 85 - 102.
  • 2Becache, E., Fauqueux, S., and Joly, P., 2003, Stability of perfectly matched layers, group velocities and anisotropic waves: Journal of Computational Physics, 188(2), 399 - 433.
  • 3Berenger, J. P., 1994, A perfectly matched layer for the absorption of electromagnetic waves: Journal of Computational Physics, 114(2), 185 - 200.
  • 4Cerjan, C., Kosloff, D., Kosloff, R., and Reshef, M., 1985, A nonreflecting boundary condition for discrete acoustic and elastic wave equation: Geophysics, 50(4), 705 - 708.
  • 5Chew, W. C., and Liu, Q., 1996, Perfectly matched layers for elastodynamics: A new absorbing boundary condition: Journal of Computational Acoustics, 4(4), 341 -359.
  • 6Chew, W. C., and Weedon, W. H., 1994, A 3-D perfectly matched medium from modified Maxwell's equations with stretched coordinates: Microwave and Optical Technology Letters, 7(13), 599 - 604.
  • 7Clayton, R., and Engquist, B., 1977, Absorbing boundary conditions for acoustic and elastic wave equations: Bulletin of the Seismological Society of America, 67(6), 1529- 1540.
  • 8Cohen, G. C., 2002, Higher-order Numerical Methods for Transient Wave Equations: Springer: Berlin.
  • 9Collino, F., and Tsogka, C., 2001, Application of the PML absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media: Geophvsics, 66(1), 294 - 307.
  • 10Courant, R., Friedrichs, K. O., and Lewy, H., 1928, 0ber die partiellen Differenzengleichungen der mathematischen Physik: Mathematische Annalen, 100, 32 - 74.

同被引文献52

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部