期刊文献+

差异演化算法在土壤分形维数估计中的应用 被引量:2

Applying Differential Evolution Algorithm to Optimize The Soil Fractal Dimension
原文传递
导出
摘要 根据UNSODA数据库的土壤颗粒大小分布和水分特征曲线资料,运用差异演化算法和分形模型,计算土壤的体积分形维数,并对分形维数与土壤体积含水量、进气压力及土壤质地等相关属性的关系进行统计分析。结果表明:分形维数反映了土壤中黏粒、粉粒和砂粒的含量变化,可以作为评价土壤质地差异的一个指标;分形维数随土壤黏粒比例的增大而增大,随砂粒比例的增大而减小;没有考虑土壤残余含水量的Brooks-Corey模型更适合运用差异演化算法来优化土壤分形维数;相比其它的拟合方法,用差异演化算法估算的分形维数具有更高的精度。 According to data of soil particle size distribution and water retention curve in the UNSODA database, differential evolution algorithm and soil fractal models were used to calculate the volume fractal dimension and statistically analyze the relationship among fractal dimension, soil volumetric water content, air-entry suction, soil texture, etc. The results showed that the fractal dimension reflect the content change of clay, silt and sand in soil, and it could be used as an indicator of soil texture. Soil fractal dimension increased with clay content in soil, and decreased with sand content. Brooks-Corey model without soil residual water content was more suitable for applying differential evolution algorithm to estimate soil fractal dimension. Compared with other optimization methods, differential evolution algorithm had higher precision in estimating the fractal dimension.
出处 《土壤通报》 CAS CSCD 北大核心 2013年第5期1081-1085,共5页 Chinese Journal of Soil Science
基金 福建省自然科学基金项目(2011J01002) 福建师范大学科研启动经费资助
关键词 分形维数 土壤水分特征曲线 差异演化算法 Fractal dimension Soil-water retention curve Differential evolution algorithm
  • 相关文献

参考文献17

  • 1陈颐 陈凌.分形几何学[M].北京:地震出版社,1998..
  • 2周虎,吕贻忠,李保国.土壤结构定量化研究进展[J].土壤学报,2009,46(3):501-506. 被引量:53
  • 3VAN GENUCHTEN M TH. A closed-form equation for predicting the conductivity of unsaturated soils[J]. Soil Sci Soc. Am. J, 1980, 44 (5): 892 - 898.
  • 4刘建立,徐绍辉.根据颗粒大小分布估计土壤水分特征曲线:分形模型的应用[J].土壤学报,2003,40(1):46-52. 被引量:54
  • 5ARYA L M, PARIS J F. A physico empirical model to predict the soil moisture characteristic from particle size distribution amt bulk density data [J]. Soil Science Society of America Journal, 1981, 45: 1023 - 1030.
  • 6TYLER S W, WHEATCRAFT S W. Application of fractal mathematics to soil water retention estimation[J]. Soil Sci Soc. Am. J, 1989, 53:987 - 996.
  • 7FRIESEN W G, MIKULA R J. Fractal dimension of coal particles[J]. Colloid. Interface Sci, 1997, 120(1): 263 - 271.
  • 8PERRIER E, RIEU M, SPOSITO G, et al. Models of water retention curve for soils with a fractal pore size distribution[J]. Water Resources Research, 1996,32:3025 - 3031.
  • 9黄冠华,詹卫华.土壤颗粒的分形特征及其应用[J].土壤学报,2002,39(4):490-497. 被引量:231
  • 10周虎,李保国,吕贻忠,郑金玉,刘武仁.不同耕作措施下土壤孔隙的多重分形特征[J].土壤学报,2010,47(6):1094-1100. 被引量:42

二级参考文献82

  • 1杨培岭,罗远培,石元春.用粒径的重量分布表征的土壤分形特征[J].科学通报,1993,38(20):1896-1899. 被引量:794
  • 2李保国.分形理论在土壤科学中的应用及其展望[J].土壤学进展,1994,22(1):1-10. 被引量:132
  • 3苏里坦,宋郁东,张展羽.沙漠非饱和风沙土壤水分特征曲线预测的分形模型[J].水土保持学报,2005,19(4):115-118. 被引量:6
  • 4王展,周云成,虞娜,张良,张玉龙.以分形理论估计棕壤水分特征曲线的可行性研究[J].沈阳农业大学学报,2005,36(5):570-574. 被引量:6
  • 5van Genuchten M Th, Leij F J. On estimating the hydraulic properties of unsaturated soils. In: van Genuchten M Th, Leij F J, Lund L J. eds. Proc. Int. Workshop on Indirect Methods of Estimating the Hydraulic Properties of Unsaturated Soils. University of California, Riverside, California, 1992. 1- 14
  • 6Young I M, Crawford J W, Rappoldt C. New methods and models for characterizing structural heterogeneity of soil. Soil and Tillage Research, 2001, 61:33 -45
  • 7Mandelbrot B B. The Fractal Geometry of Nature. San Francisco: W. H. Freeman, 1983
  • 8Tyler S W, Wheatcraft S W. Application of fractal mathematics to soil water retention estimation. Soil Science Society of America Journal, 1989, 53:987 - 996
  • 9Tyler S W, Wheatcraft S W. Fractal processes in soil water retention. Water Resources Research, 1990, 26:1 047- 1 056
  • 10Rieu M, Sposito G. Fractal fragmentation, soil porosity, and soll water properties. Ⅰ. Theory. Soil Science Society of America Journal, 1991, 55:1 231 - 1 238

共引文献443

同被引文献24

  • 1Miller J J H, O'Riordan E, Shishkin G I.Fitted numerical meth- ods for singularly perturbed problems[M].Singapore: World Scientific, 1996.
  • 2Kumar K.High order compact finite difference scheme for sin- gu-larly perturbed reaction diffusion problems on a new mesh of Shish- kin type [J].Journal of Optimization Theory and Applications, 2009, 143 (1): 123-147.
  • 3Lin T, Radojev G, Zarin H.Approximation of singularly per- turbed reaction-diffusion problems by quadratic C splines[J].Numerical Algorithm, 2012,61 ( 1 ):35 -55.
  • 4Srorn R, Price, K. Differential evolution: a simple and effi- cient adaptive scheme for global optimization over continuous spaces [J].Journal of Global Optimization, 1997,11 (4): 341-359.
  • 5Farrell P,Hegarty A F,Miller J J H,et al.Robust computational techniques for boundary layers[M].Boca Raton:Chapman and Hall/CRC,2000.
  • 6Miller J J H,O'Riordan E,Shishkin G I.Fitted numerical methods for singular perturbation problems[M].Singapore:World Scientific,1996.
  • 7Lin?T.Layer-adapted meshes for convection-diffusion problems[J].Comput Methods Appl Mech Engrg,2003,192(9/10):1061-1105.
  • 8Lin?T.Maximum-norm error analysis of a non-monotone fem for a singularly perturbed reaction-diffusion problem[J].BIT Numerical Mathematics,2007,47(2):379-391.
  • 9Kumar M,Singh P,Mishra H K.A recent survey on computational techniques for solving singularly perturbed boundary value problems[J].International Journal of Computer Mathematics,2007,84(10):1439-1463.
  • 10Kumar M.High order compact finite difference scheme for singularly perturbed reaction diffusion problems on a new mesh of Shishkin type[J].J Optim Theory Appl,2009,143(1):123-147.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部