期刊文献+

基于嵌套Gumbel Copula函数的分布估计算法 被引量:1

Estimation of Distribution Algorithms Based on Nested Gumbel Copula
下载PDF
导出
摘要 如何估计群体的联合概率分布及如何对其采样,是分布估计算法应用中需要解决的关键问题,尤其在多维情形下,该问题更显重要。Copula理论为研究多变量联合分布提供了一个有用的工具,它可以把随机变量的边缘分布和它们的相关结构分开来研究。提出基于嵌套Copula函数的分布估计算法。论文在介绍完全嵌套和部分嵌套两种嵌套copula模型的基础上,详细讨论了三维情形下,完全嵌套阿基米德Copula函数的采样算法,并给出了基于嵌套Copula函数的分布估计算法的框架。以Gumbel Copula函数为例,针对三维Benchmark函数优化问题的仿真实验,表明了该算法的有效性。 Two key issues for Estimation of Distribution Algorithms (EDAs) are how to estimate and sample the joint probability distribution, especially in multi-dimensional case. Copula theory separated joint probability distribution function into product of marginal distributions, and provided a useful tool for multivariate probability analysis. Two nested copula models were introduced, including fully nested Archimedean copula and partially nested Archimedean copula. The sampling method of three-dimensional fully nested Archimedean copula was discussed at length, and then the procedure of newly proposed paradigm, Ncopula-EDAs, was described, which indicated an innovative way to solve the multivariate and multiple dependences optimization problem. Based on Gumbel copula function, the experiment results validate the feasibility and efficiency of the algorithm.
出处 《系统仿真学报》 CAS CSCD 北大核心 2013年第10期2337-2342,共6页 Journal of System Simulation
基金 山西省回国留学人员科研资助项目(2011-078) 山西省自然科学基金(2009011011-3) 山西省软科学项目(2011041001-02)
关键词 分布估计算法 嵌套阿基米德Copula函数 联合分布 Gumbel COPULA函数 EDAs nested Archimedean copulas joint distribution Gumbel copulas
  • 相关文献

参考文献27

  • 1H Mfihlenbein, G Paass. From recombination of genes to the estimation of distributions L binary parameters [C]// PPSN IV: Proceedings of the 4th International Conference on Parallel Problem Solving from Nature. Berlin, Germany: Springer-Verlag, 1996: 178-187.
  • 2D E Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning [M]. USA: Addison-Wesley, 1989.
  • 3P Larranaga, J A Lozano. Estimation of Distribution Algorithms: A N'ew Tool for Evolutionary Computation [M]. Dordrecht, Germany: Kluwer Academic Publishers, 2002.
  • 4H Miihlenbein. The equation for response to selection and its use for prediction [J]. Evolutionary Computation (S 1063-6560), 1998, 5: 303-346.
  • 5S Baluja. Population-Based Incremental Learning: A Method for Integrating Genetic Search Based Function Optimization and Competitive Leaming [R]// Technical Report CMU-CS-94-163.
  • 6Pittsburgh, PA, USA: Camegie Mellon University, 1994. G R Harik, F G Lobo, D E Goldberg. The compact genetic algorithm [C]// Proc. IEEE Conf. Evolutionary Computation, Indianapolis, USA, 1998. USA: IEEE, 1998: 523-528.
  • 7J S De Boner, C L Isbell, P Viola. MIMIC: Finding optima by estimation probability densities [M]// Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 1997: 424-430.
  • 8S Baluja, S Davies. Using optimal dependency-trees for combinatorial optimization: learning the structure of the search space [R]// Technical Report CMU-CS-97-107.
  • 9USA: Carnegie Mellon University, 1997. M Pelican, H Miihlenbein. The bivariate marginal distribution algorithm [M]// Advances in Soft Computing-Engineering Design and Manufacturing. London, UK: Springer-Verlag, 1999: 521-535.
  • 10G Harik. Linkage learning via probabilistie modeling in the ECGA [R]// Technical Report: 99010, IlliGAL Technical Report. Urbana, USA: University of Illinois, 1999.

同被引文献26

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部