期刊文献+

含相变储能材料石膏板的物理力学及热工性能 被引量:4

Mechanical properties and thermal performance of gypsum wallboards incorporated with composite phase change materials
下载PDF
导出
摘要 为优化掺加相变储能材料(CPCM)的石膏板性能,针对实际应用环境条件,通过正交试验研究了温度、湿度等外界条件的变化对掺加CPCM石膏板的物理力学性能及热工性能的影响.结果表明,试件的抗压强度和抗折强度随着CPCM掺量的增大而降低;随钢纤维掺量或含水率的增大而增加.在不同的温度条件下,各影响因素的变化对导热系数变化的影响主次顺序不同.石膏板内部相对湿度及钢纤维掺量的增加有利于提高其导热系数,而CPCM掺量的增加会降低其导热系数.石膏板的导热系数随着板体初始温度的变化而改变,在CPCM相变温度区间的石膏板导热系数最大. To optimize the properties of gypsum wallboards incorporated with Composite Phase Change Material (CPCM), orthogonal test was used, and according to the practical conditions, the mechanical properties and thermal performance of gypsum wallboards incorporated with CPCM were studied. The results show that, the compression and flexural strength of gypsum board decreases with the increase of CPCM content, and increases with the increase of steel fiber content or moisture content. Under different temperature conditions, the influence of various factors on the thermal conductivity is in a different order. Increasing internal relative humidity and steel fiber dosage, leads to increase in the thermal conductivity, but increasing the CPCM content leads to decrease the thermal conductivity. The thermal conductivity of gypsum board is dependent on the initial board temperature. The maximum thermal conductivity appears in the phase transition temperature interval of CPCM.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2013年第9期88-93,共6页 Journal of Harbin Institute of Technology
基金 国家科技支撑计划资助项目(2011BAE14B06-07) 厦门市科学技术局科技计划资助项目(3502Z200)
关键词 石膏基复合相变材料 物理力学性能 导热系数 正交试验 防护热板法 gypsum board incorporated with CPCM mechanical properties thermal conductivity orthogonal test protection hot plate method
  • 相关文献

参考文献15

  • 1CHAN A L S. Energy and environmental performance of building facades integrated with phase change material in subtropical Hong Kong [ J ]. Energy and Buildings,2011, 43(10) : 2947 -2955.
  • 2KUZNIK F, VIRGONE J. Experimental assessment of a phase change material for wall building use[ J]. Applied Energy, 2009, 86(10): 2038-2046.
  • 3NEEPER D A. Thermal dynamics of wallboard with latent heat storage [ J ]. Solar Energy, 2000, 68 (5) : 393 - 403.
  • 4ZHANG Chengbin, CHEN Yongping, WU Iangyu, et al. Thermal response of brick wall filled with phase change materials (PCM) under fluctuating outdoor temperatures [J]. Energy and Buildings, 2011, 43(12):3524-3520.
  • 5MESALHY O, LAFDI K, ELGAFY A, et al. Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix [ J ]. Energy Conversion and Management, 2005, 46 (6) : 847 - 867.
  • 6FUKAI J, KANOU M, KODAMA Y, et al. Thermal conductivity enhancement of energy storage media using carbon fibers [ J ]. Energy Conversion and Management, 2000, 41(14) : 1543 -1556.
  • 7FUKAI J, HAMADA Y, MOROZUMI Y, et al. Effect of carbon-fiber brushes on conductive heat transfer in phase change materials [ J ]. International Journal of Heat and Mass Transfer, 2002, 45(24) : 4781 -4792.
  • 8FRUSTERI F, LEONARDI V, VASTA S, et al. Thermal conductivity measurement of a PCM based storage system containing carbon fibers [ J ]. Applied Thermal Engineering, 2005, 25(11/12) :1623 - 1633.
  • 9OYA T, NOMURA T, TSUBOTA M, et al. Thermal conductivity enhancement of erythritol as PCM by using graphite and nickel particles [ J ]. Applied Thermal Engineering (2012), doi : 10. 1016/j. apphhermaleng. 2012.05. 033.
  • 10陈则韶,钱军,叶一火.复合材料等效导热系数的理论推算[J].中国科学技术大学学报,1992,22(4):416-424. 被引量:63

二级参考文献15

共引文献101

同被引文献58

引证文献4

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部