摘要
--This paper presents a novel time delay estimation (TDE) method using the concept of entropy. The relative delay is estimated by minimizing the estimated joint entropy of multiple sensor output signals. When estimating the entropy, the information about the prior distribution of the source signal is not required. Instead, the Parzen window estimator is employed to estimate the density function of the source signal from multiple sensor output signals. Meanwhile, based on the Parzen window estimator, the Renyi's quadratic entropy (RQE) is incorporated to effectively and efficiently estimate the high-dimensional joint entropy of the multichannel outputs. Furthermore, a modified form of the joint entropy for embedding information about reverberation (multipath reflections) for speech signals is introduced to enhance the estimator's robustness against reverberation.
This paper presents a novel time delay estimation (TDE) method using the concept of entropy. The relative delay is estimated by minimizing the estimated joint entropy of multiple sensor output signals. When estimating the entropy, the information about the prior distribution of the source signal is not required. Instead, the Parzen window estimator is employed to estimate the density function of the source signal from multiple sensor output signals. Meanwhile, based on the Parzen window estimator, the Renyi's quadratic entropy (RQE) is incorporated to effectively and efficiently estimate the high-dimensional joint entropy of the multichannel outputs. Furthermore, a modified form of the joint entropy for embedding information about reverberation (multipath reflections) for speech signals is introduced to enhance the estimator's robustness against reverberation.
基金
supported by the National Natural Science Foundation of China under Grant No.61172140
‘985’ Key Projects for Excellent Teaching Team Supporting (postgraduate) under Grant No.A1098522-02