期刊文献+

Streptomyces sahachiroi ATCC 33158中一个Ⅲ型聚酮合酶基因的克隆及功能分析 被引量:2

Cloning and functional analyses of a putative type Ⅲ polyketide synthase gene fromStreptomyces sahachiroi ATCC 33158
下载PDF
导出
摘要 从链霉菌Streptomyces sahachiroi ATCC 33158基因组中克隆到1个聚酮合酶(polyketide synthase,PKS)基因orf18。生物信息学及进化树分析表明它可能属于rppA类Ⅲ型PKS基因。通过RT-PCR证实了该基因在野生型S.sahachiroi中是可以进行转录表达的。HPLC和LC-MS分析的结果表明orf18在S.lividans中异源表达时可产生1,3,6,8-四羟基萘(THN),并且发现该基因也可以在革兰氏阴性菌Pseudomonas stutzeri中异源表达并产生明显的棕红色色素。证明orf18编码的蛋白属于RppA类Ⅲ型PKS,可催化THN的合成,而产物THN在革兰氏阴性菌P.stutzeri中可进一步氧化及聚合形成棕红色色素。 A putative type III polyketide synthase (PKS) gene orfl8 found in genome sequence of Streptomyces sahachiroi ATCC 33158 was cloned and analyzed functionally. Bioinformatics and phyloge- netic analyses revealed that or f18 was highly homologous to rppA-like type PKS gene. RT-PCR re- sult demonstrated that off18 can be transcribed into mRNA in wild-type S. sahachiroi. HPLC and LC- MS analyses verified that Orfl8 catalyzes the 1,3,6,8-tetrahydroxynaphthalene (THN) biosynthesis by heterologously expressing in S. lividans. Moreover, brownish red pigments could be produced by heterol- ogous expression of or f18 in Gram-negative bacteria Pseudomonas stutzeri. Experimental results dem- onstrated that Orfl8 belongs to the RppA-like type III PKS family and catalyzes THN formation,which could be further oxidized and then polymerized to produce red pigments.
出处 《华中农业大学学报》 CAS CSCD 北大核心 2013年第6期13-20,共8页 Journal of Huazhong Agricultural University
基金 国家自然科学基金项目(30800020 30970059) 教育部留学回国人员科研启动基金项目([2009]1590) 教育部新世纪人才支持计划项目(NCET-08-0779) 中央高校基本科研业务费专项(2009PY006)
关键词 链霉菌ATCC 33158 Ⅲ型PKS RT-PCR 异源表达 1 3 6 8-四羟基萘 Streptomyces sahachiroi ATCC 33158 type III polyketide synthase (PKS) reversetranscription polymerase chain reaction (RT-PCR) heterologous expression 1, 3, 6, 8-tetra-hydroxynaphthalene (THN)
  • 相关文献

参考文献18

  • 1SHEN B. Polyketide biosynthesis beyond the type Ⅰ, Ⅱ and Ⅲ polyketide synthase paradigms[J-. Curr Opin Chem Biol, 2003,7(2) : 285-295.
  • 2AUSTIN M B, NOEL J P. The chalcone synthase superfamily of type Ⅲ polyketide synthases[J]. Nat Prod Rep, 2003,20(1):79-110.
  • 3POOTOOLAL J, THOMAS M G, MARSHALL C G, et al. Assembling the glyeopeptide antibiotic scaffold:the biosynthesis of from Streptomyces toyocaensis NRRL15009 [J]. Proc Nat Acad Sci USA,2002,99(13):8962.
  • 4LIT L, CHOROBA O W, HONG H, et al. Biosynthesis of the vancomyein group of antibiotics: characterisation of a type Ⅲ polyketide synthase in the pathway to (S)-3,5-dihydroxyphe- nylglycine electronic supplementary information (ESI) availa- ble: electrospray mass spectrum of DhpaS[J]. Chem Commun, 2001,20 : 2156-2157.
  • 5CHEN H, TSENG C C, HUBBARD B K, et al. Glycopeptide antibiotic biosynthesis: enzymatic assembly of the dedicated a- mino acid monomer (S)-3,5-dihydroxyphenylglycine[J]. Proc Nat Acad Sci USA, 2001,98(26): 14901.
  • 6SONG L, BARONA-GOMEZ F, CORRE C, et al. Type Ⅲ polyketide synthase β-ketoacyl-ACP starter unit and ethylmal- onyl-CoA extender unit selectivity discovered by Streptomyces coelicolor genome mining[J]. J Am Chem Soe, 2006, 128 (46): 14754-14755.
  • 7AOKI Y, MATSUMOTO D, KAWAIDE H,et al. Physiological role of germicidins in spore germination and hyphal elongation in Streptomyces coelicolor A3 (2) [J]. J Antibiot, 2011, 64(9) : 607-611.
  • 8FUNABASHI M, FUNA N, HORINOUCHI S. Phenolic lipids synthesized by type Ⅲ polyketide synthase confer penicillin re- sistance on Streptomyces griseus[J]. J Biol Chem, 2008, 283 (20): 13983-13991.
  • 9FUNA N, OHNISHI Y, FUJII I, et al. A new pathway for polyketide synthesis in microorganisms[J]. Nature, 1999,400 (6747) : 897-899.
  • 10FUNA N, FUNABASHI M, YOSHIMURA E, et al. A novel quinone-forming monooxygenase family involved in modification of aromatic polyketides[J]. J Blot Chem, 2005,280 (15) : 14514-14523.

同被引文献29

  • 1王晓虹,金黎明.细菌人工染色体文库的构建及应用[J].生物技术通讯,2005,16(6):668-671. 被引量:10
  • 2BERDY J.Bioactive microbial metabolites[J].Antibiot J, 2005, 58:1-26.
  • 3WALSH C T, OICONNOR S E. Polyketide:nonribosomal pep- tide epothilone antitumor agents:the Epo A, B,C subunits[J]. Ind Microbiol Biotechnol, 2003,30 : 448-455.
  • 4HOPWOOD D A.Genetie contributions to understanding polyketide synttuases[J].Chem Rev, 1997,97 : 2465-2497.
  • 5HOPWOOD D A.Cracking the polyketide code[J].PLoS Biol, 2004,2(2) : 166-169.
  • 6WALSH C T.Polyketide and nonribosomal peptide antibiotics: modularity and versatility[J]. Science, 2004,303 : 1805 1810.
  • 7SHAW-REID C A, KELLEHER N L, LOSEY H C, et al.As sembly line enzymology by multimodular nonribosomal peptide synthetases:the thioesterase domain of E. coli EntF catalyzes both elongation and cyclolactonization[J]. Chem Biol, 1999,6 (6) : 385-400.
  • 8SHIZUYA H, BIRREN B, KIM U J, et al. Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector[J].Proceedings of the National Academy of Sciences, 1992,89(18): 8794.
  • 9ZHANG H B, WING R A.Physical mapping of the rice genome with BACs[J].Plant Molecular Biology, 1997,35(1) : 115-127,.
  • 10KIESER T, BIBB M J, BUTTNER M J, et al.Practical Strepto- rn yces geneties[M].UK:John Innes Foundation,2000.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部