期刊文献+

Renormalized Solutions for Nonlinear Parabolic Systems with Three Unbounded Nonlinearities in Weighted Sobolev Spaces

Renormalized Solutions for Nonlinear Parabolic Systems with Three Unbounded Nonlinearities in Weighted Sobolev Spaces
下载PDF
导出
摘要 We prove an existence result without assumptions on the growth of some nonlinear terms, and the existence of a renormalized solution. In this work, we study the existence of renormalized solutions for a class of nonlinear parabolic systems with three unbounded nonlinearities, in the form { b1(x,u1)/ t-div(a(x,t,u1,Du1))+div(Ф1(u1))+f1(x,u1,u2)=O in Q, b2(x,u2)/ t-div(a(x,t,u2,Du2))+div(Ф2(u2))+f2(x,u1,u2)=O in Q in the framework of weighted Sobolev spaces, where b(x,u) is unbounded function on u, the Carath6odory function ai satisfying the coercivity condition, the general growth condition and only the large monotonicity, the function Фi is assumed to be continuous on ]R and not belong to (Lloc1(Q))N. We prove an existence result without assumptions on the growth of some nonlinear terms, and the existence of a renormalized solution. In this work, we study the existence of renormalized solutions for a class of nonlinear parabolic systems with three unbounded nonlinearities, in the form { b1(x,u1)/ t-div(a(x,t,u1,Du1))+div(Ф1(u1))+f1(x,u1,u2)=O in Q, b2(x,u2)/ t-div(a(x,t,u2,Du2))+div(Ф2(u2))+f2(x,u1,u2)=O in Q in the framework of weighted Sobolev spaces, where b(x,u) is unbounded function on u, the Carath6odory function ai satisfying the coercivity condition, the general growth condition and only the large monotonicity, the function Фi is assumed to be continuous on ]R and not belong to (Lloc1(Q))N.
出处 《Analysis in Theory and Applications》 2013年第3期234-254,共21页 分析理论与应用(英文刊)
关键词 Nonlinear parabolic system EXISTENCE TRUNCATION weighted Sobolev space renor-malized solution. Nonlinear parabolic system, existence, truncation, weighted Sobolev space, renor-malized solution.
  • 相关文献

参考文献35

  • 1L. Aharouch, E. Azroul and M. Rhoudaf, Strongly nonlinear variational parabolic problems in weighted sobolev spaces, The Australian Journal of Mathematical Analysis and Applica- tions, 2(5) (2008), 1-25.
  • 2L. Aharouch, E. Azroul and M. Rhoudaf, Existence results for Strongly nonlinear degener- ated parabolic equations via strong convergence of truncations with L^1 data.
  • 3. Y. Akdim, J. Bennouna, M. Mekkour and M. Rhoudaf, Renormalised solutions of nonlin- ear degenerated parabolic problems with L^1 data: existence and uniqueness, to appear in "Series in Contemporary Applied Mathematics", World Scientific.
  • 4Y. Akdim, J. Bennouna, M. Mekkour, Solvability of degenerated parabolic equations with- out sign condition and three unbounded nonlinearities, Elec. J. Differential Equations, 2011(3) (2011), 1-25.
  • 5E. Azroul, H. Redwane and M. Rhoudaf, Existence of solutions for nonlinear parabolic systems via weak convergence of truncations, Elec. J. Differential Equations, 2010(68) (2010), 1-18.
  • 6D. Blanchard, Truncation and monotonicity methods for parabolic equations equations, Nonlinear Anal., 21 (1993), 725-743.
  • 7D. Blanchard and E Murat, Renormalized solutions of nonlinear parabolic problems with L1 data, Existence and uniqueness, Proc. Ro)a Soc. Edinburgh Sect., A 127 (1997), 1137-1152.
  • 8D. Blanchard, F. Murat and H. Redwane, Existence et unicitn de la solution reormalis6e d'un probl6me parabolique assez g4n6ral, C. R. Acad. Sci. Paris Ser., 1329 (1999), 575-580.
  • 9D. Blanchard, F. Murat and H. Redwane, Existence and uniqueness of a renormalized solu- tion for a fairly general class of nonlinear parabolic problems, J. Differential Equations, 177 (2001), 331-374.
  • 10D. Blanchard and H. Redwane, Renormalized solutions of nonlinear parabolic evolution problems, J. Math. Pure Appl., 77 (1998), 117-151.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部