摘要
针对现有基于H/A/α分解提取全极化高分辨率距离像(high range resolution profile,HRRP)特征的方法都没有考虑度量尺度对所提取特征性能影响的问题,提取了平均度量尺度下的特征子集,给出联合动态互信息概念用于选择最优平均度量尺度,并剔除特征子集中的冗余特征;在此基础上,结合Bagging和Boosting算法,提出一种宽带全极化雷达目标识别方法;最后在多类飞机目标HRRP样本集上验证了该方法的有效性。
It is still an open issue how to deal with the effect of measurement scale on features in the domain of full-polarized high range resolution profile (HRRP) feature extraction based on H/A/α decomposition. To solve it, the feature subsets are extracted under the mean measurement scale. Meanwhile, the joint dynamic mutual information is introduced to select the optimal mean measurement scale and exclude the redundant features in the subsets. Finally, a novel target recognition approach based on full-polarized HRRP with the combination of Bagging and Boosting comes into being. The experiments on multi-class plane targets validate the proposed method’s efficiency.
出处
《系统工程与电子技术》
EI
CSCD
北大核心
2013年第12期2501-2506,共6页
Systems Engineering and Electronics
基金
国家自然科学基金(60975026
61273275)资助课题
关键词
高分辨率距离像
联合动态互信息
H
A
α分解
集成学习
high range resolution profile (HRRP)
joint dynamic mutual information
H/A/α target de-composition
ensemble learning