期刊文献+

Adaptive moving target detection algorithm based on Gaussian mixture model 被引量:1

一种自适应的基于混合高斯模型的运动目标检测算法(英文)
下载PDF
导出
摘要 In order to enhance the reliability of the moving target detection, an adaptive moving target detection algorithm based on the Gaussian mixture model is proposed. This algorithm employs Gaussian mixture distributions in modeling the background of each pixel. As a result, the number of Gaussian distributions is not fixed but adaptively changes with the change of the pixel value frequency. The pixels of the difference image are divided into two parts according to their values. Then the two parts are separately segmented by the adaptive threshold, and finally the foreground image is obtained. The shadow elimination method based on morphological reconstruction is introduced to improve the performance of foreground image's segmentation. Experimental results show that the proposed algorithm can quickly and accurately build the background model and it is more robust in different real scenes. 为提高运动目标检测的可靠性,提出了一种自适应的基于混合高斯模型的运动目标检测算法.该算法利用混合高斯分布对每个背景像素建模,高斯分布的个数不是固定不变的,而是随着像素值的混乱程度自适应变化.差分图像的像素按大小被分为2部分,然后对这2部分分别进行自适应阈值化分割,得到前景图像.利用基于形态学重构的阴影消除方法来改善前景图像分割的性能.不同实际场景的实验结果表明该算法能够快速准确地建立背景模型,且具有更强的鲁棒性.
出处 《Journal of Southeast University(English Edition)》 EI CAS 2013年第4期379-383,共5页 东南大学学报(英文版)
基金 The National Natural Science Foundation of China (No.61172135,61101198) the Aeronautical Foundation of China (No.20115152026)
关键词 moving target detection Gaussian mixture model background subtraction adaptive method 运动目标检测 高斯混合模型 背景差分 自适应方法
  • 相关文献

参考文献10

  • 1Zhang J Y, Barron J L. Optical flow at occlusion [ C ]// The Ninth Conference on Computer and Robot Vision. Toronto, Canada, 2012 : 198 - 205.
  • 2Tsai D M, Lai S C. Independent component analysis- based background subtraction for indoor surveillance[ J ]. IEEE Transactions on Image Processing, 2009, 18 ( 1 ) : 158 - 160.
  • 3Piccardi M. Background subtraction techniques: a review[ C ]//IEEE International Conference on Systems, Man and Cybemeties. Sydney, Australia, 2004, 4: 3099- 3104.
  • 4Wren C R, Azarbayejani A, Darrell A, et al. Pfinder: real-time tracking of the human body [ J ].IEEE Trans- actions on Pattern Analysis and Machine Intelligence,1997, 19(7) : 780-785.
  • 5Stauffer C, Grimson W E L. Adaptive background mix- ture models for real-time tracking [ C ]//IEEE Conference on Computer Vision and Pattern Recognition. Fort Col- lins, USA, 1999 : 246 - 250.
  • 6Zhang J, Chen C H. Moving objects detection and seg- mentation in dynamic video backgrounds [C ]//IEEE Conference on Technologies for Homeland Security. Wobum, MA, USA, 2007 : 64 - 69.
  • 7Lee D S. Effective Gaussians mixture learning for video background subtraction [ J ]. IEEE Transactions on Pat- tern Analysis and Machine Intelligence, 2005, 27 ( 5 ) : 827 - 832.
  • 8Li G, Zeng R L, Lin L. Moving target detection in video monitoring system [ C ]//Proceedings of the Sixth World Congress on Intelligent Control and Automation. Dalian, China, 2006 : 9778 - 9781.
  • 9Xia Y Q, Ning S H, Shen H. Moving targets detection algorithm based on background subtraction and frames subtraction [ C ]//IEEE International Conference on In- dustrial Mechatronics and Automation. Wuhan, China, 2010 : 122 - 125.
  • 10Aboueldahab T, Fakhreldin M. Adaptive control of dy- namic nonlinear systems using sigmoid diagonal recurrent neural network [ C ]//IEEE International Conference on Systems, Man and Cybernetics. Istanbul, Turkey, 2010: 4341 - 4345.

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部