摘要
Based on the pre-existing wire melting rate model of direct-current submerged arc welding ( DC-SAW) , a new numerical model of wire melting rate was developed for variable-polarity submerged are welding (VP-SAW) by accounting for the combined effects of duty cycle β and offset α. The experimental measurements are in a good agreement with the results calculated by this new wire melting rate model, with the maximum discrepancy being less than 10%. Therefore it is evident that this new numerical model can successfully describe the dependence of wire melting rate on the duty cycle β and offset α.
Based on the pre-existing wire melting rate model of direct-current submerged arc welding ( DC-SAW) , a new numerical model of wire melting rate was developed for variable-polarity submerged are welding (VP-SAW) by accounting for the combined effects of duty cycle β and offset α. The experimental measurements are in a good agreement with the results calculated by this new wire melting rate model, with the maximum discrepancy being less than 10%. Therefore it is evident that this new numerical model can successfully describe the dependence of wire melting rate on the duty cycle β and offset α.