期刊文献+

基于copula-SV模型的股市相关性的多分辨分析 被引量:2

Multiresolution analysis of stock market correlation based on copula-SV model
下载PDF
导出
摘要 使用极大重叠离散小波变换将上证指数和深成指数的日数据分解在了4个尺度上,分别采用SV-t模型拟合边缘分布,并建立copula函数来拟合两市在不同尺度上的收益率,并分析其尾部相关性.结果表明沪深两市时间序列在同尺度下的相关性远远大于不同尺度下的相关性,且在同一置信水平下,各尺度的下尾相关性要大于上尾相关性,随着交易周期的增加,不论是下尾还是上尾的相关性都明显增强. The daily returns of Shanghai composite index and Shenzhen composite index were decomposed into four trading periods by means of maximum overlap discrete wavelet transform (MODWT), and then SV-t model was used to fit the margins distributions of these series. Based on this, copula function was established to fit the returns of two stock markets at different scales and the correlation of their respective tails was analyzed. The results show that, the correlation between Shanghai composite index and Shenzhen composite index at the same scale is much larger than at different scales. Furthermore, at the same confidence level and different scales, the correlation between the lower tails is larger than that between the upper tails. With the transaction cycle increasing, the correlation between lower tails and that between upper tails increase areatlv.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2013年第12期1004-1011,共8页 JUSTC
关键词 SV-t模型 极大重叠离散小波变换 COPULA函数 相关性 SV-t model MODWT copula function correlation
  • 相关文献

参考文献30

二级参考文献87

共引文献408

同被引文献25

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部