期刊文献+

Analysis of radial basis function interpolation approach 被引量:4

径向基函数插值方法分析(英文)
下载PDF
导出
摘要 The radial basis function (RBF) interpolation approach proposed by Freedman is used to solve inverse problems encountered in well-logging and other petrophysical issues. The approach is to predict petrophysical properties in the laboratory on the basis of physical rock datasets, which include the formation factor, viscosity, permeability, and molecular composition. However, this approach does not consider the effect of spatial distribution of the calibration data on the interpolation result. This study proposes a new RBF interpolation approach based on the Freedman's RBF interpolation approach, by which the unit basis functions are uniformly populated in the space domain. The inverse results of the two approaches are comparatively analyzed by using our datasets. We determine that although the interpolation effects of the two approaches are equivalent, the new approach is more flexible and beneficial for reducing the number of basis functions when the database is large, resulting in simplification of the interpolation function expression. However, the predicted results of the central data are not sufficiently satisfied when the data clusters are far apart. Freedman提出了径向基函数插值方法用于解决测井和其它岩石物理问题中遇到的反问题。该方法利用一组测量数据集来预测物理性质。然而,该方法仍有一些问题需要研究,如刻度数据集的空间分布对插值效果的影响。本文提出了一种新的径向基函数插值方法,在输入参数空间域中均匀填充单位基函数,并且利用地层因子、粘度、渗透性和分子组成的数据集对这两种方法做了分析和比较。两种插值方法效果相当,新方法的基函数操作更为灵活。当数据库较大时,新方法可适当减少基函数个数,从而简化插值函数表达式。考察数据集空间分布对插值效果的影响,发现当数据集群相距甚远时,中部数据的预测效果不是很理想。
出处 《Applied Geophysics》 SCIE CSCD 2013年第4期397-410,511,共15页 应用地球物理(英文版)
基金 supported by the National Science and Technology Major Projects(No.2011ZX05020-008) Well Logging Advanced Technique and Application Basis Research Project of Petrochina Company(No.2011A-3901)
关键词 Inverse problems radial basis function interpolation new approach 径向基函数 插值方法 岩石物理性质 物理问题 弗里德曼 函数表达式 RBF 分子组成
  • 相关文献

参考文献11

  • 1Anand, V., and Freedman, R., 2009, New methods for predicting properties of live oils from NMR: SPWLA 50'h Annual Logging Symposium, paper DD.
  • 2Franke, R., 1982, Scattered data interpolation: Tests of some methods: Mathematics of Computation, 38(157), 181 200.
  • 3Freedman, R., 2006, New approach for solving inverse problems encountered in well-logging and geophysical applications: Petrophysics, 47(2), 93 - 111.
  • 4Freedman, R., Lo, S., Flaum, M., Hirasaki, G. J., Matteson, A., and Sezginer, A., 2001, A new NMR method of fluid characterization in reservoir rocks: Experimental confirmation and simulation results: SPE Journal, 6(4), 452 - 464.
  • 5Gao, B., Wu, J., Chen, S., Kwak, H., and Funk, J., 2011, New method for predicting capillary curves from NMR data in carbonate rocks: SPWLA 52.
  • 6Annual Logging Symposium. Haykin, S., 1999, Neural Networks: A comprehensive Foundation: Prentice Hall, Hamilton, Ontario, Canada.
  • 7Kansa, E. J., 1990, Multiquadrics A scattered data approximation scheme with applications to computational fluid dynamics - ll, Solutions to Parabolic, Hyperbolic and Elliptic partial differential equations: Colnputers and Mathernatics with Applications, 19(8 - 9), 147 - 161.
  • 8Lukaszyk, S., 2004, A new concept of probability metricand its applications in approximation of scattered data sets: Computational Mechanics, 33(4), 299 - 304.
  • 9Micchelli, C. A., 1986, Interpolation of scattered data: Distance matrices and conditionally positive definite functions: Constructive Approximation, 2, 11 - 22.
  • 10Powell, M. J. D., 2001, Radial basis function methods for interpolation to functions of many variables: Presented at the Fifth Hellenic-European Computer Mathematics and its Applications. 1 - 23.

同被引文献46

  • 1苏小红,侯秋香,马培军,王亚东.RBF神经网络的混合学习算法[J].哈尔滨工业大学学报,2006,38(9):1446-1449. 被引量:15
  • 2朱晓荣,沈连丰.RBF-based cluster-head selection for wireless sensor networks[J].Journal of Southeast University(English Edition),2006,22(4):451-455. 被引量:2
  • 3Qing Chunxiang, Wang Mingming, Xu Yanbo. Current situation of soil contamination by heavy metals and re- search progress in bio-remediation technique[ J]. Journal of Southeast University: Natural Science Edition, 2013, 43(3) : 669 - 674. ( in Chinese).
  • 4Nagajyoti P C, Lee K D, Sreekanth T V M. Heavy met- als, occurrence and toxicity for plants: a review[ J]. En- vironmental Chemistry Letters, 2010, 8(3): 199-216.
  • 5Li J, Heap A D. A review of comparative studies of spa- tial interpolation methods in environmental sciences: per- formance and impact factors [ J]. Ecological Informatics, 2011, 6(3): 228-241.
  • 6Stein M L. Interpolation of spatial data: some theory for kriging [M]. Berlin: Springer, 1999:153-154.
  • 7Kishne A S, Bfingmark E, Bfingmark L, et al. Compari- son of ordinary and lognormal kriging on skewed data of total cadmium in forest soils of Sweden[ J]. Environmen- tal Monitoring and Assessment, 2003, 84(3):243-263.
  • 8Philippopoulos K, Deligiorgi D. Application of artificial neural networks for the spatial estimation of wind speed in a coastal region with complex topography[ J]. Renewable Energy, 2012, 38(1): 75-82.
  • 9Opitz D W, Shavlik J W. Generating accurate and diverse members of a neural-network ensemble[ C]//Advances in Neural Information Processing Systems. Cambridge, MA, USA: MIT Press, 1996: 535-541.
  • 10Hansen L K, Salamon P. Neural network ensembles[J]. IEEE Transactions on Pattern Analysis and Machine Intel- ligence, 1990, 12(10) : 993 - 1001.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部