摘要
A method of feedforward compensation for electromotive force(EMF) in the single-phase permanent magnet linear generation system and a research in the performance of the single-phase PMLG system are presented.A general mathematical model for the single-phase permanet magnet linear generator(PMLG) system is established and the current loop,voltage loop and the feedforward control are studied based on it for the control system.Then this paper analyses the transfer function of the power system,optimizes current loop and voltage loop parameters by engineering algorithm,and calculates the optimal control parameters.An EMF feedforward compensation method is developed to optimize the control system which improves dynamic performance of the power system but does not affect the steady-state performance.The result of this research verifies the correctness and rationality of the design for the control system.
A method of feedforward compensation for electromotive force (EMF) in the single-phase permanent magnet linear generation system and a research in the performance of the single-phase PMLG system are presented.A general mathematical model for the single-phase permanet magnet linear generator (PMLG) system is established and the current loop,voltage loop and the feedforward control are studied based on it for the control system.Then this paper analyses the transfer function of the power system,optimizes current loop and voltage loop parameters by engineering algorithm,and calculates the optimal control parameters.An EMF feedforward compensation method is developed to optimize the control system which improves dynamic performance of the power system but does not affect the steady-state performance.The result of this research verifies the correctness and rationality of the design for the control system.
基金
Supported by the National High Technology Research and Development Program of China(No.2006AA05Z231)
the National Natural Science Foundation of China(No.51177025)