期刊文献+

基于Haar小波的虹膜特征提取算法 被引量:5

Iris Feature Extraction Based on Haar Wavelet
下载PDF
导出
摘要 虹膜特征提取算法的优劣决定了虹膜识别系统的性能,经典小波变换算法在特征提取上存在不足,提出一种利用二维Haar小波提取虹膜特征的算法。算法在虹膜预处理的基础上,利用2D Haar小波对虹膜特征提取区域分解,对第三层小波分解高频系数编码生成375bits虹膜编码,利用相似度作为特征匹配关系。在中国科学院虹膜数据库[CASIA(1.0)]上的实验结果表明,算法在认证模式(Verification)与识别模式(Identification)下,性能均优于Boles的算法和Wildes的算法,仅次于Daugman的算法;但本算法虹膜码长度仅为Daugman的1/5,更节省储存空间,正确识别率为99.16%,等错率达到0.54%。 The performance of iris recognition system is determined largely by the iris feature extraction algorithm. To improve the accuracy of iris recognition system, an efficient algorithm is proposed for iris feature extraction based on 2D Haar wavelet. Firstly, the iris image is decomposed by the 2D Haar wavelet three times, and then a 375-bit iris code is obtained by quantizing all the high-frequency coefficients at third lever. Finally similarity degree function is used as matching scheme. Experimental results on CASIA iris database show that algorithm has attractive performances than algorithm from Boles and Wildes, only inferior to Daugman's algorithm, but the length of our iris code is only one-fifth comparing with Daugman,s. The proposed algorithm has the encouraging correct recognition rate (CRR) which is 99.16%, accompan- ying with very low equal error rate (EER) 0.54%.
出处 《科学技术与工程》 北大核心 2014年第1期81-85,共5页 Science Technology and Engineering
基金 河南省高等学校青年骨干教师计划项目(教高[2011]873号)资助 重庆市博士后科研项目(XM2012049)特别资助
关键词 虹膜特征提取Haar小波 小波分解 细节系数调制 Iris feature extraction components demodulating Haar wavelet wavelet decomposition detail
  • 相关文献

参考文献2

二级参考文献19

  • 1宋加涛,刘济林,池哲儒,王蔚.人脸正面图像中眼睛的精确定位[J].计算机辅助设计与图形学学报,2005,17(3):540-545. 被引量:13
  • 2张超,袁晓燕,施鹏飞.虹膜内外边缘的快速定位算法[J].计算机工程与应用,2005,41(27):60-61. 被引量:9
  • 3郑小梅,侯媛彬.一种新的虹膜定位方法[J].传感技术学报,2007,20(1):217-219. 被引量:11
  • 4JAIN A K,BOLLE R M,PANKANTI S.Biometrics personal identification in networked society[M].Now York:Springer,1999.
  • 5DAUGMAN J.How iris recognition works[J].IEEE Transactions on Circuits and Systems for Video Technology,2004,14(1):21-30.
  • 6WILDES R P.Iris recognition.an emerging biometric technology[J].Prececding of the IEEE,1997,85(9):1348-1363.
  • 7DAUGMAN J.The importance of being random:statistical principles of iris recognition[J].Pattern Recognition,2003,36(2):279-291.
  • 8Institute of Automation,Chinese Academy of Sciences.CASIA iris image database (ver 1.0)[EB/OL].(2007-12-23)[2010-01-24].ht-tp://www.sinobiometrics.com.
  • 9Kong W,Zhang D.Accurate iris segmentation based on novel reflection and eyelash detection model[C]//Proceedings of 2001 International Symposium on Intelligent Multimedia,Video and Speech Processing,Hong Kong,2001:263-266
  • 10Daugman J.How iris recognition works[J].IEEE Transactions on Circuit and System for Video Technology,2004,14(1):21-30

共引文献15

同被引文献32

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部