期刊文献+

An interesting identity and asymptotic formula related to the Dedekind sums 被引量:1

An interesting identity and asymptotic formula related to the Dedekind sums
原文传递
导出
摘要 We use the analytic methods and the properties of Gauss sums to study one kind mean value problems involving the classical Dedekind sums,and give an interesting identity and asymptotic formula for it. We use the analytic methods and the properties of Gauss sums to study one kind mean value problems involving the classical Dedekind sums, and give an interesting identity and asymptotic formula for it.
出处 《Science China Mathematics》 SCIE 2014年第3期659-663,共5页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China(Grant Nos.11001218 and 11071194) the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20106101120001)
关键词 Dedekind sums mean value analytic method IDENTITY asymptotic formula Dedekind和 渐近公式 高斯和 恒等式
  • 相关文献

参考文献10

  • 1Apostol T M. Modular Functions and Dirichlet Series in Number Theory. New York: Springer-Verlag, 1976.
  • 2Conrey J B, Fransen E, Klein R, et al. Mean values of Dedekind sums. J Number Theory, 1996, 56:214-226.
  • 3Hua L K. Introduction to Number Theory. Beijing: Science Press, 1979.
  • 4Jia C H. On the mean value of Dedekind sums. J Number Theory, 2001, 87:173- 188.
  • 5Rademacher H. On the transformation of logrj(-). J Indian Math Soc, 1955, 19:25-30.
  • 6Rademacher H. Dedekind Sums, Carus Mathematical Monographs. Washington DC: Math Assoc Amer, 1972.
  • 7Zhang W P. A note on the mean square value of the Dedekind sums. Acta Math Hungar, 2000, 86:275-289.
  • 8Zhang W P. On the mean values of Dedekind sums. J de Thorie des Nombres de Bordeaux, 1996, 8:429-442.
  • 9Zhang W P. A sum analogous to Dedekind sums and its hybrid mean value formula. Acta Arith, 2003, 107:1-8.
  • 10Zhang W P. On a Cochrane sum and its hybrid mean value formula. J Math Anal Appl, 2002, 267:89 -96.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部