期刊文献+

Existence of Periodic Solutions to a Class of Third-order p-Laplacian Equations with Delays

Existence of Periodic Solutions to a Class of Third-order p-Laplacian Equations with Delays
下载PDF
导出
摘要 By using the continuation theorem of coincidence degree theory due to Mawhin and the new analytical method, we study the T-periodic solutions to a class of third order p-Laplacian equations with distributed delays as follows . Some new results for existence of T-periodic solutions to such equations are obtained.
出处 《Chinese Quarterly Journal of Mathematics》 CSCD 2013年第4期492-502,共11页 数学季刊(英文版)
基金 Foundation item: Supported by the National Natural Science Foundation of China(ll07100t) Supported by the 211 Project of Anhui University(KJTD002B) Supported by the Natural Science Foundation of Anhui Province(t208085MAB)
关键词 periodic solutions deviating argument coincidence degree p-Laplacian equa-tions 数学教学 教学方法 课堂教学 微分方程
  • 相关文献

参考文献1

二级参考文献14

  • 1Cheng W S, Ren J L. On the existence of periodic solutions for p-Laplacian generalized Lienard equation. Nonlinear Anal., 2005, 60: 65-75.
  • 2Lu S P, Ge W G, Zheng Zuxiu. Periodic solutions to neutral differential equation with deviating arguments. Appl. Math. Comput., 2004, 152: 17-27.
  • 3Hale J K. Theory of Functional Differential Equations. New York: Springer-Verlag, 1977.
  • 4Gaines R E, Mawhin J L. Coincidence Degree and Nonlinear Differential Equations. Berlin: Springer-Verlag, 1977.
  • 5Del Pino M A, Elgueta M, Manasevich R F. A homotopic deformation along p of a Lerray-Schauder degree result and existence for (|u'|^P-2u')'+ f(t,u) = 0, u(0) = u(T) = 0,p > 1. J. Differential Equations, 1989, 80: 1-13.
  • 6Del Pino M A, Manasevich R F. Multiple solutions for the p-Laplacian under global nonresonance. Proc. Ameri. Math. Soc., 1991, 112: 131-138.
  • 7Fabry C, Fayyad D. Periodic solutions of second order differential equations with a p-Laplacian and asymmetric nonlinearities. Rend. Istit. Univ. Trieste, 1992, 24: 207-227.
  • 8Manasevich R F, Mawhin J. Periodic solutions for nonlinear systems with p-Laplacian like operators. J. Differential Equations, 1998, 145: 367-393.
  • 9DinR T, Iannacci R, Zanolin F. Existence and multiplicity results for periodic solutions of semilinear Duffing equations. J. Differential Equations, 1993, 105: 364-409.
  • 10DinR T, Iannacci R, Zanolin F. Time-maps for the solvability of perturbed nonlinear Duffing equations. Nonlinear Anal. Theory, Methods and Applications, 1991, 17: 635-653.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部