期刊文献+

离散频率周期任务的节能调度算法 被引量:5

Energy-saving Scheduling Algorithm for Periodic Tasks with Discrete Frequency
下载PDF
导出
摘要 DRA算法通过建立α队列,动态回收系统空闲时间,利用DVS技术降低系统能耗,但其通常假设处理器提供连续的频率或者电压.为了保证任务的实时性,DRA算法选择的实际运行速度比连续频率情况下计算出的理想速度Sx大,这样会造成系统资源的浪费.本文以DRA算法为基础,针对处理器提供离散频率或电压,提出了DRA-PARTION算法.该算法把任务的执行时间划分为两部分,通过Sx确定第一部分的速度SL和第二部分的速度SH,并且利用理想速度下的执行时间e'x.I计算出第一部分的执行时间e'x.L.待第一部分执行完成,根据剩余执行时间完成第二部分.仿真实验表明DRA-PARTION算法比DRA算法节约大约19.04%的能耗. DRA algorithm dynamicly recoveries the system idle time by building the a queue and uses DVS technology to reduce sys- tem power consumption ,but it is generally assumed that the processor supports the continuous frequency of voltage levels. In order to guarantee the deadline of real-time task, DRA algorithms select higher speed than the computed ideal speed in the continuous frequen- cy. It will waste the system resources. In this paper,we present a DRA-PARTION algorithm based on DRA algorithm with processors providing the discrete frequency or voltage. The algorithm divides the task~ execution time into two parts. The speed of first part and second part is determined by ideal speed. We can compute the execution time of first part by the execution time with ideal speed. If the first part completed,then completed the second part with the remaining execution time. Simulation results show that DRA-PARTION algorithm provides about 19.04% of energy savings compare to DRA algorithm.
出处 《小型微型计算机系统》 CSCD 北大核心 2014年第3期667-670,共4页 Journal of Chinese Computer Systems
基金 核高基国家科技重大专项项目(2012ZX01029001-002)资助
关键词 DVS DRA算法 DRA-PARTION算法 节能调度 DVS DRA algorithm DRA-PARTION algorithm energy-saving scheduling
  • 相关文献

参考文献1

二级参考文献11

  • 1韩建军,李庆华,缪天鹏.多处理器计算环境中基于能量节约的实时动态调度算法[J].小型微型计算机系统,2006,27(5):866-872. 被引量:3
  • 2Burd T D, et al. Energy efficient CMOS Micro-processor design [C]. Proc. Hawaii Int'l Conf. System Science, 1995,288-297.
  • 3Chandrakasan A, et al. Low-power CMOS digital design[J]. IEEE J. Solid-State Circuit, 1992, 27(4):473-484.
  • 4Gruian. System-level design methods for low-energy architectures containing variable voltage processors [C]. Proc. Workshop Power-Aware Computing Systems, 2000.
  • 5Yao F, Demers A, Shenker S. A scheduling model for reduced CPU energy [C]. Proc. 36th Symp. Foundations of Computer Science, 1995,374-382.
  • 6Krishna C M,Lee Y H. Voltage clock scaling adaptive scheduling techniques or low power in hard real-time systems [C]. Proc. 6th IEEE Real-Time Technology and Applications Syrup. , 2000.
  • 7Venkat Rao, Nicolas Navet, Gaurav Singhal, et al. Battery aware dynamic scheduling for periodic task graphs [C]. The 14th International Workshop on Parallel and Distributed Real- Time Systems, 2006
  • 8Hakan Aydin, Rami Melhem, Daniel Mosse. Power-aware scheduling for periodic real-time tasks [J]. IEEE Transaction on Computer, MAY 2004, 53(5) :584-600.
  • 9Chen Jian-jia, Kuo Tei-wei. Multiprocessor energy-efficient scheduling for real-time tasks with different power characteristics [C]. Proc. 2005 International Conference on Parallel Processing (ICPP'05), 2005.
  • 10Zhu Da-kai, et al. Scheduling with dynamic voltage/speed adjustment using slack reclamation in multiprocessor real-time systems[J]. IEEE Transaction on Parallel and Distributed Systems, 2003, 14(7): 686-699.

共引文献3

同被引文献27

  • 1Strosnider J, Lehocaky J, Sha L. The deferrable server algorithm for enhanced aperiodic responsiveness in hard real- time environments [J]. IEEE Trans on Computers, 1995, 44 (1) : 73-91.
  • 2Sprunt B, Sha L, Lehoczky J. Aperiodic task scheduling for hard real time systems [J]. Real-Time Systems, 1989, 1 (1): 27-60.
  • 3Abeni L, Buttazzo G. Integrating multimedia applications in hard real-time systems [C] //Proc of IEEE Real-Time Systems Syrup. Piscataway, NJ: IEEE, 1998:4-13.
  • 4Gong M, Seong Y, Lee C. On Line dynamic voltage scaling on processor with discrete frequency and voltage levels[C] // Proc of Int Conf on Convergence Information Technology. Piseataway, NJ: IEEE, 2007:1824-1831.
  • 5Aydin H, Melhem R, Moss D. Dynamic and aggressive scheduling techniques for power-aware real-time systems [C] //Proc of the 22nd Real-Time Systems Syrup. Piscataway, NJ: IEEE, 2001:192-211.
  • 6Aydin H, Devadas V, Zhu D. System-level energy management for periodic real-tlme tasks [C] //Proc of the 27th IEEE Int Real-Time Systems Symp. Piscataway, NJ.- IEEE, 2006: 313-322.
  • 7Aydin H, Yang Q. Energy-responsiveness trade-offs for real- time systems with mixed workload [C] //Proc of Real-Time and Embedded Technology and Applications Symp. Piscataway, NJ: IEEE, 2004:74-83.
  • 8Shin D, Kim J. Dynamic voltage scaling of mixed task sets in priority-driven systems[J]. IEEE Trans on Computer Aided Design of Integrated Circuits and Systems, 2006, 25(3): 438-453.
  • 9Qadi A, Goddard S, Farritor S. A dynamic voltage scaling algorithm for sporadic tasks [C]//Proc of the 24th Real Time System Symp. Piscataway, NJ: IEEE, 2003:52-62.
  • 10Zhong X, Xu C. Energy aware modeling and scheduling for dynamic voltage scaling with statistical real-time guarantee [J]. IEEE Transon Computers, 2007, 56(3): 358-372.

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部