期刊文献+

基于分类回归树和AdaBoost的眼底图像视网膜血管分割 被引量:18

Retinal Vessel Segmentation in Fundus Images Using CART and AdaBoost
下载PDF
导出
摘要 提出一种能有效分割眼底图像中视网膜血管的监督学习方法,为眼底图中的每个像素点构造一个包括局部特征、形态学特征和Gabor特征在内的39维特征向量,用以判定其是否为血管上的像素.在进行分类计算时,以分类回归树作为弱分类器对样本集分类,然后对AdaBoost分类器进行训练得到强分类器,并由此完成各个像素点的分类判定.基于国际公共数据库DRIVE的实验结果表明,该方法的平均精确度达到0.960 7,且敏感度和特异性均优于已有的基于监督学习的方法,适用于眼底图像的计算机辅助定量分析和疾病诊断. It is proposed an effective method based on supervised learning for retinal vessel segmentation in fundus images.To determine whether a pixel is in the vessel,a 39-dimensional feature vector is extracted for every pixel,consisting of local features,morphological features and Gabor features.Afterwards,the sampled set is first treated by the classification and regression tree (CART) as a weak classifier,and then strengthened by a trained AdaBoost-based classifier as a strong classifier,to classify the pixels.The proposed method is evaluated with the public digital retinal images for vessel extraction (DRIVE) set and experimental results show that the proposed method has a high average accuracy of 0.9607 and performs better than other approaches based on supervised learning in sensitivity and specificity.It is suitable for computer-aided eye disease diagnosis and evaluation using fundus images.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2014年第3期445-451,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61173122) 湖南省自然科学基金重点项目(12JJ2038) 湖南省自然科学基金(09JJ6102) 高等学校博士学科点专项科研基金资助课题(2013016 2120089) 中央高校基本科研业务费专项资金资助(2012QNZT067)
关键词 眼底图像 视网膜血管分割 分类回归树 ADABOOST fundus images retinal vessel segmentation classification and regression tree Adaboost
  • 相关文献

参考文献20

  • 1Cheng S C. Huang Y M. A novel approach to diagnose diabetes based on the fractal characteristics of retinal images[J]. IEEE Transactions on Information Technology in Biomedicine. 2003. 7(3): 163-170.
  • 2Preet hi M. Vanithamani R. Review of retinal blood vessel detection methods for automated diagnosis of diabetic retinopathy[C] //Proceedings of International Conference on Advances in Engineering. Science and Management. Los Alamitos: IEEE Computer Society Pre". 20]2: 262-265.
  • 3Chaudhuri S. Chatterjee S. Katz N. et al , Detection of blood vessels in retinal images using two-dimensional matched filters[J]. IEEE Transactions on Medical Imaging ? .\989. 8 (3): 263-269.
  • 4Fraz M M, Remagnino r. Hoppe A, et al. Blood vessel segmentation methodologies in retinal images-a survey[J]. Computer Methods and Programs in Biomedicine, 2012, 108 (1): 407-433.
  • 5Niemeijer M, StaalJ, van Ginneken B, et al . Comparative study of retinal vessel segmentation methods on a new publicly available database[C] //Proceedings of SPIE. Bellingham: Society of Photo-Optical Instrumentation Engineers, 2004, 5370: 648-656.
  • 6StaalJ, Abramoff M D, Niemeijer M, et al . Ridge-based vessel segmentation in color images of the retina[J]. IEEE Transactions on Medical Imaging, 2004, 23(4): 501-509.
  • 7SoaresJ V B, LeandroJ J G, Cesar R M, et al . Retinal vessel segmentation using the 2 -D Gabor wavelet and supervised classification[J]. IEEE Transactions on Medical Imaging, 2006,25(9): 1214-1222.
  • 8Ricci E, Perfetti R. Retinal blood vessel segmentation using line operators and support vector classification[J]. IEEE Transactions on Medical Imaging, 2007, 26(10): 1357-1365.
  • 9Osareh A, Shadgar B, Markham R. A computational?intelligence-based approach for detection of exudates in diabetic retinopathy images[J]. IEEE Transactions on Information Technology in Biomedicine, 2009, 13 (4): 535- 545.
  • 10Lupascu C A, Tegolo D, Trucco E. FABC: retinal vessel segmentation using AdaBoost[J]. "IEEE Transactions on Information Technology in Biomedicine, 2010, 14(5): 1267- 1274.

二级参考文献7

  • 1Salembier P, Serra J. Flat zones filtering, connected operator, and filters by reconstruction[J]. IEEE Transactions on Image Processing, 1995, 4(8): 1153~1160
  • 2Salembier P. Morphological multi-scale segmentation for image coding[J]. Signal Processing, 1994, 38(3): 359~386
  • 3Vincent L. Morphological gray scale reconstruction in image analysis: Applications and efficient algorithms[J]. IEEE Transactions on Image Processing, 1993, 2(2): 176~201
  • 4Crespo J, Maojo V. New result on the theory of morphological filters by reconstruction[J]. Pattern Recognition, 1998, 31(4): 419~429
  • 5Hansen Michel W, Higgins Willian E. Watershed-based maximum-homogeneity filtering[J]. IEEE Transactions on Image Processing, 1999, 8(7): 982~987
  • 6Vincent L, Soille P. Watersheds in digital space: An efficient algorithms based on immersion simulation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(6): 583~598
  • 7Haris K, Efstratiadis S, et al. Hybrid image segmentation using watersheds and fast region merging[J]. IEEE Transactions on Image Processing, 1998, 7(12): 1684~1698

共引文献44

同被引文献175

  • 1姚畅,陈后金.一种新的视网膜血管网络自动分割方法[J].光电子.激光,2009,20(2):274-278. 被引量:17
  • 2李天庆,张毅,刘志,胡东成.Snake模型综述[J].计算机工程,2005,31(9):1-3. 被引量:47
  • 3郑素珍,陈文静,苏显渝.基于复Morlet小波的相位分析[J].光电工程,2007,34(4):73-76. 被引量:7
  • 4XIANG Y,GAOX,ZOU B J, etal: Segmentation of retinal blood vessels based on divergence and bot- hat transform [C]. Proceedings of InternationalConference on Progress in In f ormatics and Computing, Shanghai, China: 1EEE, 2014: 316- 320.
  • 5QUIGLEY H A, BROMAN A T. The number of people with glaucoma worldwide in 2010 and 2020 [J]. British Journal of Ophthalmology, 2006, 90 (3) : 262-267.
  • 6HOOVER A, GOLDBAUM M. Locating the optic nerve in a retinal image using the fuzzy convergence J the blood vessels [J]. IEEE Transactions on VIedical Imaging, 2003, 22(8): 951-958.
  • 7LI H Q, CHUTATAPE O. Automated feature extraction in color retinal images by a model based approach l-J]. IEEE Transactions on Bio-Medical Engineering, 2004, 51(6): 246-254.
  • 8OSAREH A, MIRMEHDI M, THOMAS B, et al: Automated identification of diabetic retinal exudates in digital colour images [J]. British Journal of Ophthalmology, 2003, 87 (10) : 1220- 1223.
  • 9ABDEL-RAZIK YOUSSIF A A H, GHALWASH A Z, ABDEL-RAHMAN GHONEIM A A S. Optic disc detection from normalized digital fundus images by means of a vessels' direction matched filter [J]. IEEE Transactions on Medical Imaging, 2008, 27 (1) : 11-18.
  • 10LI H, CHUTATAPE O. Automatic location of optic disk in retinal images [C]. Proceedings of 2001 International Conference on Image Processing, Thessaloniki, Greece: IEEE, 2001: 837-840.

引证文献18

二级引证文献116

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部