期刊文献+

基于ML-PDA算法的低可见目标跟踪研究 被引量:2

Research on Tracking Low Observable Targets Based on ML-PDA Algorithm
下载PDF
导出
摘要 针对利用传统算法难以跟踪低空目标的问题,提出了一种可行的跟踪低空目标的最大似然-概率数据关联(ML-PDA)算法。在分析各种低空目标特性的基础上,首先建立了基于ML-PDA滤波算法的低空目标跟踪模型,然后对该模型进行了深入分析,最后通过计算机仿真对该模型进行了验证。结果表明:ML-PDA滤波算法对低空目标跟踪十分有效,并且提高了滤波实时性,具有较好的工程应用前景。 In view of existing problems in traditional algorithm applied in tracking low observable targets, a feasible ML-PDA algorithm was proposed. On the basis of characteristic analysis of low-attitude target, firstly, the tracking for low observable targets was built based on ML-PDA algorithm. Then,this model was analyzed deeply and finally this model was validated through computer simulation. The simulation results show that ML-PDA algorithm is effective on trackig low-attitude observable targets, the method has a good prospect in engineering ap- plication.
出处 《弹箭与制导学报》 CSCD 北大核心 2014年第1期27-32,共6页 Journal of Projectiles,Rockets,Missiles and Guidance
关键词 低可见目标 目标跟踪 最大似然估计 概率数据关联 low observable targets target tracking maximum likelihood estimator(ML) probabilistic data association (PDA)
  • 相关文献

参考文献6

  • 1敬忠良.神经网络跟踪理论及其应[M].北京:国防工业出版社,1997.
  • 2何友,修建娟,张晶炜,等.雷达数据处理及应用[M].2版.北京:电子工业出社,2006.
  • 3Bar-Shalom Y. Muhitarget-muhisensor tracking: Advanced applications Vol. I [ M ]. Artech HouseInc. , 1998.
  • 4Feo M, Graziano A, Miglioli R,et al. IMMJPDA vs. MHT and Kalman filter with NN correlation: Performance com- parison[J]. IEE Proc. on Radar, Sonar and Navigation 1997,144(2) :49 -56.
  • 5Kirubarajan T, Bar-Shalom Y, Blair W D,et al. IMMPDA solution to benchmark for radar resource allocation and tracking in the presence of ECM [ J ]. IEEE Trans. Aero- space and Electronic Systems, 1998, 34( 3 ) : 1023 - 1036.
  • 6Lerro D, and Bar-Shalom Y. Interacting multiple model tracking with target amplitude feature [ J ]. IEEE Trans. Aerospace and Electronic Systems, 1993, 29 ( 2 ) : 494 - 509.

同被引文献10

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部