期刊文献+

基于相关系数和双向扩散结合的优质正电子发射断层重建算法

High quality positron emission tomography reconstruction algorithm based on correlation coefficient and forward-and-backward diffusion
下载PDF
导出
摘要 在正电子发射断层成像(PET)中,传统迭代算法会造成重建图像细节信息丢失或目标边界模糊。为了解决上述问题,提出一种基于相关系数和双向扩散结合的优质中值先验(MP)重建算法。首先,引入特征因子相关系数来表征图像局部灰度统计信息,构造出结合相关系数的双向扩散模型;其次,考虑到双向模型对背景和边缘区别处理的优点,将新模型应用到中值先验分布的最大后验重建算法中,形成基于双向扩散的中值先验重建算法。实验结果表明,该算法在去除噪声的同时能够较好地保持图像中的目标边界信息,信噪比(SNR)和均方误差(RMSE)的变化也能直观体现重建图像质量的提高。 In Positron Emission Tomography (PET) computed imaging, traditional iterative algorithms have the problem of details loss and fuzzy object edges. A high quality Median Prior (MP) reconstruction algorithm based on correlation coefficient and Forward-And-Backward (FAB) diffusion was proposed to solve the problem in this paper. Firstly, a characteristic factor called correlation coefficient was introduced to represent the image local gray information. Then through combining the correlation coefficient and forward-and-backward diffusion model, a new model was made up. Secondly, considering that the forward-and-backward diffusion model has the advantages of dealing with background and edge separately, the proposed model was applied to Maximum A Posterior (MAP) reconstruction algorithm of the median prior distribution, thus a median prior reconstruction algorithm based on forward-and-backward diffusion was obtained. The simulation results show that, the new algorithm can remove the image noise while preserving object edges well. The Signal-to-Noise Ratio (SNR) and Root Mean Squared Error (RMSE) also show visually the improvement of the reconstructed image quality.
出处 《计算机应用》 CSCD 北大核心 2014年第5期1482-1485,1498,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61071192 61271357) 山西省自然科学基金资助项目(2009011020-2) 山西省研究生优秀创新项目(2009011020-2 20123098) 山西省国际合作项目(2013081035)
关键词 正电子发射断层成像 图像局部灰度 双向扩散 中值先验 最大后验重建 Positron Emission Tomography (PET) imaging image local gray Forward-And-Backward (FAB) diffusion median prior Maximum A Posterior (MAP)
  • 相关文献

参考文献13

  • 1KARAKATSANIS N A,LODGE M A,TAHARI A K,et al.Dynamic whole-body PET parametric imaging:I.Concept,acquisition protocol optimization and clinical application[J].Physics in Medicine and Biology,2013,58(20):7391.
  • 2GERAMIFAR P,ZAFARGHANDI M S,GHAFARIAN P,et al.Respiratory-induced errors in tumor quantification and delineation in CT attenuation-corrected PET images:effects of tumor size,tumor location,and respiratory trace:a simulation study using the 4D XCAT phantom[J].Molecular Imaging and Biology,2013,15(6):655-665.
  • 3CHEN Y,CHEN W,FENG Y,et al.Convergent Bayesian reconstruction for PET using new MRF quadratic membrane-plate hybrid multi-order prior[C]//MIAR'06:Proceedings of the 3rd International Conference on Medical Imaging and Augmented Reality.Berlin:Springer-Verlag,2006:309-316.
  • 4ALENIUS S,RUOTSALAINEN U.Bayesian image reconstruction for emission tomography based on median root prior[J].European Journal of Nuclear Medicine,1997,24(3):258-265.
  • 5ALENIUS S,RUOTSALAINEN U.Generalization of median root prior reconstruction[J].IEEE Transactions on Medical Imaging,2002,21(11):1413-1420.
  • 6HSIAO I T,RANGARAJAN A,GINDI G.A new convex edge-preserving median prior with applications to tomography[J].IEEE Transactions on Medical Imaging,2003,22(5):580-585.
  • 7GUI Z,LIU Y,HE J.PML algorithm for positron emission tomography combined with nonlocal fuzzy anisotropic diffusion filtering[J].IEEE Transactions on Nuclear Science,2012,59(5):1984-1989.
  • 8SHEPP L A,VARDI Y.Maximum likelihood reconstruction for emission tomography[J].IEEE Transactions on Medical Imaging,1982,1(2):113-122.
  • 9WHITAKER R T,PIZER S M.A multi-scale approach to nonuniform diffusion[J].CVGIP:Image Understanding,1993,57(1):99-110.
  • 10GILBOA G,SOCHEN N,ZEEVI Y Y.Forward-and-backward diffusion processes for adaptive image enhancement and denoising[J].1EEE Transactions on Image Processing,2002,11(7):689-703.

二级参考文献18

  • 1吴亚东,孙世新.基于二维小波收缩与非线性扩散的混合图像去噪算法[J].电子学报,2006,34(1):163-166. 被引量:34
  • 2HERMAN G T. Image reconstruction from projections: Implementa- tion and application[M]. Berlin: Springer-Verlag, 1979.
  • 3SHEPP L A, VARDI Y. Maximum likelihood reconstruction for e- mission tomography[ J]. IEEE Transactions on Medical Imaging, 1982, 1(2) : 113 - 122.
  • 4LANGE K. Convergence of EM image reconstruction algorithms with Gibbs smoothness [ J]. IEEE Transactions on Medical Imaging, 1990, 9(4) : 439 -446.
  • 5LI S T. Markov random field modeling in image analysis[ M]. Ber- lin: Springer Verlag, 2001.
  • 6ZHAN JIE, CHEN WUFAN. Bayesian reconstruction algorithm for PET using new Markov quadratic hybrid multi-order priors [ C]// The 1 st International Conference on Bioinformatics and Biomedical Engineering. New York: IEEE, 2007,334 -337.
  • 7PERONA P, MALIK J. Scale space and edge detection using aniso- tropic diffusion[ J]. IEEE Transactions on Pattern Analysis and Ma-chine Intelligence, 1990, 12(7) : 629 -639.
  • 8YAN YIHUA, PENG BO, ZHANG XIZHEN. Noise suppression with wavelets in image reconstruction for aperture synthesis[ EB/OL]. [2012- 05- 20]. ftp://iraf, noao. edu/adassconf/web/adass_proc/ adass_95/yany/yany, html.
  • 9MRAZEK P, WEICKERT J. Rotationally invariant wavelet shrink- age[ C]//Proceedings of DAGM'03. Berlin: Springer-Verlag, 2003: 156 - 163.
  • 10ALENIUS S, RUOTSALAINEN U. Bayesian image reconstruction for emission tomography based on median root prior[ J ]. European Journal of Nuclear Medicine and Molecular Imaging, 1997, 24 (3) : 2.58 -265.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部