期刊文献+

Topology optimization of thermoelastic structures using the guide-weight method 被引量:4

Topology optimization of thermoelastic structures using the guide-weight method
原文传递
导出
摘要 The guide-weight method is introduced to solve the topology optimization problems of thermoelastic structures in this paper.First,the solid isotropic microstructure with penalization(SIMP)with different penalty factors is selected as a material interpolation model for the thermal and mechanical fields.The general criteria of the guide-weight method is then presented.Two types of iteration formulas of the guide-weight method are applied to the topology optimization of thermoelastic structures,one of which is to minimize the mean compliance of the structure with material constraint,whereas the other one is to minimize the total weight with displacement constraint.For each type of problem,sensitivity analysis is conducted based on SIMP model.Finally,four classical 2-dimensional numerical examples and a 3-dimensional numerical example considering the thermal field are selected to perform calculation.The factors that affect the optimal topology are discussed,and the performance of the guide-weight method is tested.The results show that the guide-weight method has the advantages of simple iterative formula,fast convergence and relatively clear topology result.
出处 《Science China(Technological Sciences)》 SCIE EI CAS 2014年第5期968-979,共12页 中国科学(技术科学英文版)
基金 supported by the National Natural Science Foundation of China(Grant No.51375251) the National Basic Research Program("973"Program)(Grant No.2013CB035400)of China
关键词 topology optimization THERMOELASTIC guide-weight method sensitivity analysis 拓扑优化 弹性结构 导重法 惩罚因子 敏感性分析 优化问题 插值模型 各向同性
  • 相关文献

参考文献3

二级参考文献42

  • 1左孔天,陈立平,钟毅芳,王书亭,张云清.基于人工材料密度的新型拓扑优化理论和算法研究[J].机械工程学报,2004,40(12):31-37. 被引量:63
  • 2孙宝元,杨贵玉,李震.拓扑优化方法及其在微型柔性结构设计中的应用[J].纳米技术与精密工程,2003,1(1):24-30. 被引量:11
  • 3左孔天,陈立平,张云清,王书亭.用拓扑优化方法进行热传导散热体的结构优化设计[J].机械工程学报,2005,41(4):13-16. 被引量:41
  • 4程耿东,顾元宪,王健.我国机械优化研究与应用的综述和展望[J].机械强度,1995,17(2):68-74. 被引量:41
  • 5Rodrigues H, Fernandes P. A material based model for topology optimization of thermoelastic structures. Int J Numerical Methods in Engineering, 1995, 38:1951-1965.
  • 6Li Q, Steven GP, Xie YM. Displacement minimization of themoelastic structures by evolutionary thickness design. Computer Methods in Applied Mechanics Engineering, 1999, 179:361-378.
  • 7Cho S, Choi JY. Efficient topology optimization of thermo-elasticity problems using coupled field adjoint sensitivity analysis method. Finite Elements in Analysis and Design, 2005, 41:1481-1495.
  • 8Rozvany GIN. Basic geometrical properties of exact optimal composite plates. Computers and Structures, 2000, 76: 263-275.
  • 9Rozvany GIN. Exact analytical solutions for some popular benchmark problem in topology optimization. Structural Optimization, 1998, 15:42-48.
  • 10Zhang WH, Fleury C. A modification of convex approximations methods for structural optimization. Computers and Structures, 1997, 64:89-95.

共引文献43

同被引文献17

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部