摘要
近几年来 ,小波理论和信号的多尺度表示方法都得到了迅速发展 ,并在包括信号处理和图像处理在内的众多领域中得到了成功的应用 ,而在这些领域中 ,目前一个较为活跃的分支是基于小波变换的多尺度表示的统计信号处理 .运用多尺度分析的思想 ,将基于模型的动态系统分析方法与基于统计特性的多尺度信号变换方法相结合 ,建立起目标状态基于多源观测信息的多尺度分布式融合估计和单源观测信息的多尺度分布式估计两种新算法 ,用计算机仿真研究验证了算法效能 .
Multiscale methods in signal and image processing have experienced a surge of activity in recent years, inspired primarily the emerging theory of multiscale representation of signals and wavelet transforms. One of the lines of investigation that has been sparked these developments is statistical signal processing based on wavelet transforms and multiscale representstion. By use of the multiscale analysis, this paper combines the model-based dynamic system analysis method with the multiscale transformation method based on the statistical characteristics. Two new algorithms of multiscale fusion estimation based on multi-sensor dynamic system and single sensor dynamic system are proposed and the effectiveness of multiscale distributed fusion algorithm is illustrated.
出处
《控制理论与应用》
EI
CAS
CSCD
北大核心
2000年第6期841-846,共6页
Control Theory & Applications
基金
supportedbytheNationalScienceFoundationofChina(6 95 75 0 15,6 9772 0 31)andHenanProvincialNaturalScienceFoundationofChina(9940 5
关键词
小波变换
多尺度估计
动态系统
传感器
信号处理
multiscale analysis
wavelet transformation
Kalman filtering
multiscale estimatiL