摘要
G是l 群 ,Γm(G)是G之极小素子群所成集 ,Γ(G)是G之正则子群所成根系 .对于 γ∈Γ(G) ,Sγ=∩ {P∈Γm(G) |P Gγ} ,称每个Sγ 为Conrad子群 .本文研究Sγ 的特征 ,并由此建立扭类F与Fv2 以及Fv
Let G be an l group, Γ m(G) denotes the set of all minimal prime subgroups of G,Γ(G) denotes the root system of all regular subgroups of G. For any γ∈Γ(G),S γ=∩{P∈Γ m(G)|PG γ} .Each S γ is said to be a Conrad subgroup.Some characteristics of S γ are studied and the equivalent conditions between F and F v 2 and between F v and SV are set up in this paper.
出处
《商丘师范学院学报》
CAS
2001年第2期59-62,共4页
Journal of Shangqiu Normal University