期刊文献+

变异Henry问题检验网格Peclet数在数值计算中的重要性 被引量:1

Verifying the importance of mesh Peclet number in numerical simulations using modified Henry problems
下载PDF
导出
摘要 有限元法是求解地下水流和溶质运移对流-弥散方程的常用数值方法,它可以精确高效地处理以弥散为主的问题,但求解以对流为主的问题易引起显著的数值振荡。通过Galerkin有限元法对变异Henry问题进行模拟求解,得到了用不同的剖分网格及水动力弥散系数时,在特选节点处的浓度穿透曲线,分析并找到了浓度振荡的原因及合适的消除方法,即若出现浓度数值解在某值附近振荡,可以通过加密网格或增加水动力弥散系数将其消除。模拟结果及其分析表明:即使是研究区域相同,不同的边界条件、不同的水动力弥散系数对网格精度的要求不同;换言之,同一网格对不同模型参数的有效性也不同。网格Peclet数能够有效地判定给定的网格剖分是否会引起浓度振荡,对有限元法数值计算的网格剖分具有指导意义。 Finite element method( FEM) is one of the most popular numerical methods in solving convectiondiffusion equations of groundwater flow and solute transport problem. It can solve diffusion-dominated problems efficiently,but may induce significant numerical oscillation in convection-dominated problems. In this paper, numerical simulations were conducted using Galerkin FEM to solve modified Henry problems. The breakthrough curves of concentration were plotted at the skillfully-selected observation point for different mesh discretizations and hydrodynamic dispersion coefficients. The reasons for concentration oscillation and suitable methods to eliminate the oscillation were found through theoretical analyses. Namely,the concentration oscillation could be eliminated through mesh refinement or add hydrodynamic dispersion coefficient. Numerical results and analyses indicated that,even if for the same simulation domain,different boundary conditions and hydrodynamic dispersion coefficients may need different meshes in order to obtain accurate numerical solution. Peclet number is efficient in judging numerical oscillation of concentration and can sever as a criterion for mesh discretization in numerical simulations.
作者 马倩 李海龙
出处 《水文地质工程地质》 CAS CSCD 北大核心 2014年第3期1-5,共5页 Hydrogeology & Engineering Geology
基金 国家杰出青年基金(41025009) 香港科研奖励基金委员会资助项目(HKU702611P/05P)
关键词 浓度振荡 有限元法 变异Henry问题 Peclet数 网格剖分 concentration oscillation finite element method(FEM) modified Henry problem Peclet number mesh discretization
  • 相关文献

参考文献13

  • 1冯绍元.解地下水中溶质运移问题的特征有限元法[J].武汉水利电力学院学报,1991,24(4):410-417. 被引量:2
  • 2Simpson M J, T P Clement. Improving the worthiness of the Henry problem as a benchmark for density- dependent groundwater flow models [ J ]. Water Resources Research, 2004,40 : W01504.
  • 3Henry H R. Effects of dispersion on salt encroachment in coastal aquifers[J]. US Geological Survey, 1964, Water-Supply Paper 1613 -C.
  • 4Frind E O. Simulation of long-term transient density- dependent transport in groundwater [ J]. Advances in Water Resources, 1982, 5:73-88.
  • 5Huyakorn P, Andersen P F, Mercer J, et al. Saltwater intrusion in aquifers: development and testing of a three-dimensional finite element model [ J ]. WaterResources Research, 1987, 23 ( 2 ) :293 - 312.
  • 6Abarca E, Carrera J, Vila X S, et al. Anisotropic dispersvie Henry problem [ J ]. Advances in Water Resources, 2006, 30:913-926.
  • 7Boufadel M C, M T Suidan, A D Venosa. A numerical model for density-and-viscosity-dependent flows in two-dimensional variably-saturated porous media[ J ]. Journal of Contaminant Hydrology, 1999a, 36: 1-20.
  • 8Boufadel M C, M T Snidan, A D Venosa. Numerical modeling of water flow below dry salt lakes: effect of capillarity and viscosity [ J ]. Journal of Hydrology, 1999b, 221:55-74.
  • 9Boufadel M C. A mechanistic study of nonlinear solute transport in a groundwater-surface water system under steady state and transient hydraulic conditions [ J ].Water Resources Research, 2000, 36 : 2549 - 2565.
  • 10Li Hailong, Boufadel M C, Weaver J W. Tide- induced seawater-groundwater circulation in shallow beach aquifers[ J]. Journal of Hydrology, 2008, 352 : 211 - 224.

共引文献1

同被引文献16

  • 1刘扬.对流扩散方程的新型Crank-Nicholson差分格式[J].数学杂志,2005,25(4):463-467. 被引量:10
  • 2李合莲,陈家军.铀尾矿库中^(238)U运移数值模拟[J].安全与环境工程,2007,14(1):36-38. 被引量:5
  • 3Hossain M A,Barber M E. Optimized Petrov-Galerkin model foradvective-dispersive transport [ J ]. Applied Mathematics andComputation , 2000,115(1) :1-10.
  • 4Dehghan M. Weighted finite difference techniques for the one-di-mensional advection-diffusion equation[J]. Applied Mathematicsand Computation ,2004,147(2) : 307-319.
  • 5Sun N Z,Yeh W G. A proposed upstream weight numericalmethod for simulation pollutant transporting ground water[J].Water Resources Research,1983,19(6) : 1489-1500.
  • 6Brooks A N,Hughes T J R. Streamline upwind/Petrov-Galerkinformulations for convection dominated flows with particular em-phasis on the incompressible Navier-Stokes equations[J]. Com-puter Methods in Applied Mechanics and Engineering , 1982,32(1/2/3)=199-259.
  • 7DouglasJ,Russell T F. Numerical method for convection-domi-nated diffusion problems based on combing the method of char-acteristics with finite element or finite difference procedures[J].SIAM Journal on Numerical Analysis ?1982,19(5) : 871-885.
  • 8TsaiT L, Yang J C, Huang L H. Characteristics method usingcubic-spline interpolation for advection-diffusion equation [ J].Journal of Hydraulic Engineering , 2004,130 C 6) : 580-585.
  • 9LeismannH M,Frind E O. A symmetric-matrix time integrationscheme for the efficient solution of advection-dispersion prob-lems[J]. Water Resources Research ,1989,25(6) :1133-1139.
  • 10Fetter C W. Contaminant Hydrology [M]. New Jersey: Pren-tice-Hal,1999:45-186.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部