期刊文献+

Abundant solutions of Wick-type stochastic fractional 2D KdV equations

Abundant solutions of Wick-type stochastic fractional 2D KdV equations
下载PDF
导出
摘要 A modified fractional sub-equation method is applied to Wick-type stochastic fractional two-dimensional (2D) KdV equations. With the help of a Hermit transform, we obtain a new set of exact stochastic solutions to Wick-type stochastic fractional 2D KdV equations in the white noise space. These solutions include exponential decay wave solutions, soliton wave solutions, and periodic wave solutions. Two examples are explicitly given to illustrate our approach. A modified fractional sub-equation method is applied to Wick-type stochastic fractional two-dimensional (2D) KdV equations. With the help of a Hermit transform, we obtain a new set of exact stochastic solutions to Wick-type stochastic fractional 2D KdV equations in the white noise space. These solutions include exponential decay wave solutions, soliton wave solutions, and periodic wave solutions. Two examples are explicitly given to illustrate our approach.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第6期97-103,共7页 中国物理B(英文版)
关键词 2D KdV equations fractional calculus white noise Hermite transform 2D KdV equations, fractional calculus, white noise, Hermite transform
  • 相关文献

参考文献34

  • 1Holden H, Osendal B, UbCe J and Zhang T 1996 Stochastic Partial Differential Equations (Birhkauser: Basel)pp. 159-163.
  • 2Manakov S V, Santini P M and Takhtajan L A 1980 Phys. Lett. A 75 451.
  • 3Sweilam N H, Khader M M and A1-Bar 2007 Phys. Lett. A 371 26.
  • 4Daftardar-Gejji V and Jafari H 2007 Appl. Math. Comput. 189 541.
  • 5Daftardar-Gejji V and Bhalekar S 2008 Appl. Math. Comput. 202 113.
  • 6Golbabai A and Sayevand K 2010 Nonlinear. Sci. Lett. A 1 147.
  • 7Golbabai A and Sayevand K 2011 Comput. Math. Appl. 62 1003.
  • 8Li B A and Wang M L 2005 Chin. Phys. 14 1698.
  • 9Wang M L and Zhou Y B 2003 Phys. Lett. A 318 84.
  • 10Wang M L, Wang Y M and Zhang J L 2003 Chin. Phys. 12 1341.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部