期刊文献+

基于Voronoi几何划分和层次化建模的纹理影像分割 被引量:2

Voronoi tessellation and hierarchical model based texture image segmentation
下载PDF
导出
摘要 将基于像素MRF分割方法拓展到基于地物目标几何约束的区域MRF分割,提出了一种基于区域和统计的纹理影像分割方法,其基本思想是利用Voronoi划分技术将影像域划分为若干子区域。在此基础上,采用二值高斯马尔科夫随机场(BGMRF,bivariate Gaussian Markov random field)模型,静态随机场模型和Potts模型从邻域、区域及全局层次描述影像的纹理结构,并将该纹理结构模型纳入贝叶斯框架;依据贝叶斯定理构建纹理影像分割模型;利用metropolis-hastings(M-H)算法进行模型参数估计,并依据最大后验概率(MAP,maximum a posterior)准则进行优化,从而完成纹理影像分割。为了验证所提出方法的正确性,分别对合成纹理影像,真实纹理影像及遥感影像进行了分割实验,定性和定量的测试结果验证了提出方法的有效性、可靠性和准确性。 A regional and statistical based algorithm for texture image segmentation was proposed. The Voronoi tessella- tion was used for partitioning the domain of an image into sub-regions corresponding to the components of homogenous regions, to which the texture image needs to be segmented. Bivariate Ganssian Markov random field (BGMRF) model, static random field, and potts model were employed to characterize the interactions between two neighbor pixel pairs in a sub-region, and among sub-regions, respectively. Following Bayesian paradigm, a posterior distribution, which models the texture segmentation for a given texture image, was obtained. A metropolis-hastings algorithm was designed for simulating the posterior distribution. Then, texture segmentation was obtained by maximum a posterior (MAP) scheme. The proposed algorithm was tested with both of synthesized and real texture images. The results are qualitatively and quantitatively evaluated and show that the proposed algorithm works well on both of texture images.
出处 《通信学报》 EI CSCD 北大核心 2014年第6期82-91,共10页 Journal on Communications
基金 国家自然科学基金资助项目(41301479 41271435) 对地观测技术国家测绘地理信息局重点实验室开放基金资助项目(K201204) 国家海洋局海洋溢油鉴别与损害评估技术重点实验室开放研究基金资助项目(201211)~~
关键词 纹理分割 VORONOI划分 二值高斯马尔科夫随机场 贝叶斯定理 最大后验概率 texture segmentation Voronoi tessellation bivariate Gaussian Markov random field (BGMRF) Bayesianinference maximum a posterior (MAP)
  • 相关文献

参考文献23

  • 1宋晓峰,王爽,刘芳.基于区域MRF和贝叶斯置信传播的SAR图像分割[J].电子学报,2010,38(12):2810-2815. 被引量:15
  • 2KIM T H,EOM I K,KIM Y S.Multiscale Bayesian texture segmentation using neural networks and Markov random fields[J].Neural Computing and Applications,2009,18(2):141-155.
  • 3JOBANPUTRA R,CLAUSI D A.Preserving boundaries for image texture segmentation using grey level co-occurring probabilities[J].Pattern Recognition,2006,39(2):234-245.
  • 4DENG H W,CLAUSI D A.Unsupervised image segmentation using a simple MRF model with a new implementation scheme[J].Pattern Recognition,2004,37(12):2323-2335.
  • 5王文辉,冯前进,刘磊,陈武凡.基于类自适应高斯-马尔可夫随机场模型和EM算法的MR图像分割[J].中国图象图形学报,2008,13(3):488-493. 被引量:15
  • 6UNSER M.Local linear transforms for texture measurements[J].Signal Processing,1986,11(1):61-79.
  • 7CARIOU C,CHEHDI K.Unsupervised texture segmentation / classification using 2-D autoregressive modeling and the stochastic expectation-maximization algorithm[J].Pattern Recognition Letters,2008,29(8):905-917.
  • 8KOKKINOS I,EVANGELOPOULOS G,MARAGOS P.Texture analysis and segmentation using modulation features,generative models and weighted curve evolution[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(1):142-157.
  • 9HSU T I,KUO J L,WILSON R.A multiresolution texture gradient method for unsupervised segmentation[J].Pattern Recognition,2000,33(11):1819-1833.
  • 10BOVIK A C.Analysis of multichannel narrow-band filters for image texture segmentation[J].IEEE Transactions on Signal Processing,1991,39(9):2025-2043.

二级参考文献123

共引文献172

同被引文献27

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部