期刊文献+

混合偏好模型下的分布式理性秘密共享方案 被引量:8

A Distributed Rational Secret Sharing Scheme with Hybrid Preference Model
下载PDF
导出
摘要 理性秘密共享方案通过扩展参与者的类型后具有更好的适应性,而现有方案中的共享秘密往往依赖于秘密分发者,但在某些特定环境中秘密分发者并不一定存在.通过对传统分布式秘密共享方案的分析,给出了分布式理性秘密共享方案的一般形式化描述;同时,考虑理性参与者的眼前利益和长远利益,提出一种新的理性参与者混合偏好模型;进一步结合机制设计理论的策略一致机制,设计了一个激励相容的信誉讨价还价机制,以此有效约束理性参与者的行为,从而实现了公平的(t,n)(t,n≥2)分布式理性秘密共享方案的构造;通过从信道类型、秘密分发者的在线/离线需求、方案的通用性和偏好模型等方面与目前相关理性秘密共享方案进行对比分析,进一步分析了所提出方案的优势. In traditional secret sharing schemes, players are either honest or malicious. An honest player follows the protocol perfectly but a malicious player always deviate from the protocol. However, players' behavior is selfish and they follow the protocol only if their expected utility is satisfied in rational secret sharing scheme. In that sense, rational secret sharing has more applicability. In the existence of rational secret sharing schemes, the preference models only focus on immediate interests or long-term interests, and the secret's distributions rely on the dealer. But such dealer may not exist in some special settings. After analyzing the traditional distributed secret sharing schemes, a general formalization of distributed rational secret sharing scheme is proposed. In our setting, a new hybrid preference model which simultaneously considers the immediate interests and the long-term interests of rational participants is discussed. Meanwhile, combining with the strategy- proof mechanisms of mechanism design theory, the bargaining reputation mechanism is designed with the incentive compatibility, which is effectively to restrict the behavior of the rational players, so that a fair (t,n) (t,n≥2) distributed rational secret sharing scheme is realized. Finally, some advantages of our scheme are showed by comparing with current rational secret sharing schemes in communication channel types, the requirement of on-line or off-line dealer, universality and the rational players' preference model.
出处 《计算机研究与发展》 EI CSCD 北大核心 2014年第7期1476-1485,共10页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60963023 61262073 61363068) 贵州省自然科学基金项目(20092113 20132112) 全国统计科学研究计划重点项目(2013LZ46) 贵州大学博士基金项目(2007040 2012024) 贵州大学研究生创新基金项目(2013017 2013018)
关键词 混合偏好模型 分布式理性秘密共享 形式化描述 策略一致机制 公平性 hybrid preference model distributed rational secret sharing formalization strategy-proof mechanism fairness
  • 相关文献

参考文献24

  • 1Shamir A. How to share a secret [J]. Communications of the ACM, 1979, 22(11): 612-613.
  • 2Blakley G R. Safeguarding cryptographie keys [C] //Proc of the American Federation of Information Processing Societies National Computer Conf. New York: American Federation of Information Processing Societies (AFIPS), 1979:313-317.
  • 3Halpern J, Teague V. Rational secret sharing and multiparty computation: Extended abstract [C] //Proc of the 36th Annual ACM Symp on Theory of Computing. New York: ACM, 2004:623-632.
  • 4Gordon S D, Katz J. Rational secret sharing revisited [G] // LNCS 4116: Proc of the 5th Int Conf on Security and Cryptography for Networks. Berlin: Springer, 2006: 229- 241.
  • 5Abraham I, Dolev D, Gonenen R, et al. Distributed computing meets game theory: Robust mechanisms for rational secret sharing and multiparty computation [C] //Proc of the 25th Annual ACM Symp on Principles of Distributed Computing. New York: ACM, 2006:53-62.
  • 6Katz J. Bridging game theory and cryptography: Recent results and future directions [C] //Proe of the 5th Conf on Theory of Cryptography. Berlin: Springer, 2008:251-272.
  • 7Maleka S, Shareef A, Rangan C P. Rational secret sharing with repeated games [G] //LNCS 4991 : Proc of the 4th Int Conf on Information Security Practice and Experience. Berlin: Springer, 2008:334-346.
  • 8Asharov G, Lindell Y. Utility dependence in correct and fair rational secret sharing [G] //LNCS 6577: Proc of the 29th Annual Int Cryptology Conf on Advances in Cryptology. Berlin: Springer, 2009:559-576.
  • 9Ong S J, Parkes D V, Alon R, et al. Fairness with an honest minority and a rational majority [G]//LNCS ,5444: Proc of the 6th Theory of Cryptography Conf on Theory of Cryptography. Berlin: Springer, 2009: 36-53.
  • 10TIAN Youliang,MA Jianfeng,PENG Changgen,CHEN Xi,JI Wenjiang.One-Time Rational Secret Sharing Scheme Based on Bayesian Game[J].Wuhan University Journal of Natural Sciences,2011,16(5):430-434. 被引量:8

二级参考文献81

  • 1Herzberg A, Jakobsson M, Jarecki S. Proactive Public-Key and Signature Schemes[C]. In Proceedings of the 4th Annual Conference on Computer Communications Security, 1997. 100-110.
  • 2Gennaro R, Jarecki S, Krawczyk H, et al. Rabin. Robust Threshold DSS Signatures[C]. Advances in Cryptology-Eurocrypt'96, International Conference on the Theory and Application of Cryptographic Techniques, 1996. 354-371.
  • 3Ostrovsky R, Yung M. How to Withstand Mobile Virus Attacks[C]. In Proceedings of the 10th Annual Symposium on Principles of Distributed Computing, 1991. 51-59.
  • 4Blakley G R. Safeguarding Cryptographic Keys[C]. Proceedings of the 1979 National Computer Conference, Volume 48 of AFIPS Conference Proceedings, 1979. 313-317.
  • 5Shamir A. How to Share a Secret[J]. Communication of the ACM, 1979,22(11):612-613.
  • 6Feldman P. A Practical Scheme for Non-Interactive Verifiable Secret Sharing[J]. In Proc.28th Annual Symp. 1987.427-437.
  • 7Gemmell P. An Introduction to Threshold Cryptography[J]. Cryptobytes, 1997: 7-12.
  • 8Pedersen T. Non-Interactive and Information-Theoretic Secure Verifiable secret Sharing[C]. Advances in Cryptology-Crypto'91, the 11th Annual International Cryptology Conference, 1992. 129-140.
  • 9Wu T, Malkin M, Boneh D. Building Intrusion Tolerant Applications[C].In Proceedings of the 8th USENIX Security Symposium, 1999. 79-91.
  • 10Herzberg A, Jarecki S, Krawczyk H, et al. Proactive Secret Sharing or: How to Cope with Perpetual Leakage[C]. Advances in Cryptology-Crypto'95, the 15th Annual International Cryptology Conference, 1995. 457-469.

共引文献51

同被引文献47

  • 1Halpern J, Teague V. Rational secret sharing and multiparty computation: Extended abstract [C] //Proe of the 36th Annual ACM Symp on Theory of Computing. New York: ACM, 2004: 623-632.
  • 2Asharov G, Lindell Y. Utility dependence in correct and fair rational secret sharing [J]. Journal of Cryptology, 2011, 24 (1): 157-202.
  • 3Ong S J, Parkes D V, Alon R, et al. Fairness with an honest minority and a rational majority [G] //LNCS 5444: Proc of the 6th Theory of Cryptography Conf. Berlin: Springer, 2009: 36-53.
  • 4Kol G, Naor M. Cryptography and game theory: Design protocols for exchanging information [G]//LNCS 4948: Proc of the 5th Theory of Cryptography Conf. Berlin: Springer, 2008:320-339.
  • 5Gordon S D, Katz J. Rational secret sharing revisited [G] // LNCS 4116: Proc of the 5th Int Conf on Security and Cryptography for Networks. Berlin.. Springer, 2006; 229- 241.
  • 6Kol G, Naor M. Games for exchanging information[C] // Proc of the 40th Annual ACM Syrup on Theory of Computing. New York: ACM, 2008: 423-432.
  • 7Fuchsbauer G, Katz J, Naccache D. Efficient secret sharing in the standard communication model[G]//LNCS 5978: Proc of the 7th Theory of Cryptography Conf. Berlin: Springer, 2010:419-436.
  • 8Sourya J D, Asim K P. Achieving crrectness in fair rational secret sharing [G] //LNCS 8257: Proc of the 12th Int Conf on Cryptology and Network Security. Berlin: Springer, 2013: 139-161.
  • 9Varsha D, Mahnush M, Jared S. Scalable mechanisms for rational secret sharing [J].Distributed Computing, 2015, 28 (3) :171-187.
  • 10Micali S, Shelat A. Purely rational secret sharing (extend abstract) [C] //LNCS 5444: Proc of the 6th Theory of Cryptography Conf. Berlin: Springer, 2009 : 54-71.

引证文献8

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部