期刊文献+

Research on Spatial-Temporal Characteristics and Driving Factor of Agricultural Carbon Emissions in China 被引量:37

Research on Spatial-Temporal Characteristics and Driving Factor of Agricultural Carbon Emissions in China
下载PDF
导出
摘要 Macroscopic grasp of agricultural carbon emissions status, spatial-temporal characteristics as well as driving factors are the basic premise in further research on China’s agricultural carbon emissions. Based on 23 kinds of major carbon emission sources including agricultural materials inputs, paddy ifeld, soil and livestock breeding, this paper ifrstly calculated agricultural carbon emissions from 1995 to 2010, as well as 31 provinces and cities in 2010 in China. We then made a decomposed analysis to the driving factors of carbon emissions with logarithmic mean Divisia index (LMDI) model. The results show:(1) The amount of agricultural carbon emissions is 291.1691 million t in 2010. Compared with 249.5239 million t in 1995, it increased by 16.69%, in which, agricultural materials inputs, paddy ifeld, soil, enteric fermentation, and manure management accounted for 33.59, 22.03, 7.46, 17.53 and 19.39%of total agricultural carbon emissions, respectively. Although the amount exist ups and downs, it shows an overall trend of cyclical rise; (2) There is an obvious difference among regions:the amount of agricultural carbon emissions from top ten zones account for 56.68%, while 9.84%from last 10 zones. The traditional agricultural provinces, especially the major crop production areas are the main source regions. Based on the differences of carbon emission rations, 31 provinces and cities are divided into ifve types, namely agricultural materials dominant type, paddy ifeld dominant type, enteric fermentation dominant type, composite factors dominant type and balanced type. The agricultural carbon emissions intensity in west of China is the highest, followed by the central region, and the east zone is the lowest; (3) Compared with 1995, efifciency, labor and structure factors cut down carbon emissions by 65.78, 27.51 and 3.19%, respectively;while economy factor increase carbon emissions by 113.16%. Macroscopic grasp of agricultural carbon emissions status, spatial-temporal characteristics as well as driving factors are the basic premise in further research on China’s agricultural carbon emissions. Based on 23 kinds of major carbon emission sources including agricultural materials inputs, paddy ifeld, soil and livestock breeding, this paper ifrstly calculated agricultural carbon emissions from 1995 to 2010, as well as 31 provinces and cities in 2010 in China. We then made a decomposed analysis to the driving factors of carbon emissions with logarithmic mean Divisia index (LMDI) model. The results show:(1) The amount of agricultural carbon emissions is 291.1691 million t in 2010. Compared with 249.5239 million t in 1995, it increased by 16.69%, in which, agricultural materials inputs, paddy ifeld, soil, enteric fermentation, and manure management accounted for 33.59, 22.03, 7.46, 17.53 and 19.39%of total agricultural carbon emissions, respectively. Although the amount exist ups and downs, it shows an overall trend of cyclical rise; (2) There is an obvious difference among regions:the amount of agricultural carbon emissions from top ten zones account for 56.68%, while 9.84%from last 10 zones. The traditional agricultural provinces, especially the major crop production areas are the main source regions. Based on the differences of carbon emission rations, 31 provinces and cities are divided into ifve types, namely agricultural materials dominant type, paddy ifeld dominant type, enteric fermentation dominant type, composite factors dominant type and balanced type. The agricultural carbon emissions intensity in west of China is the highest, followed by the central region, and the east zone is the lowest; (3) Compared with 1995, efifciency, labor and structure factors cut down carbon emissions by 65.78, 27.51 and 3.19%, respectively;while economy factor increase carbon emissions by 113.16%.
出处 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第6期1393-1403,共11页 农业科学学报(英文版)
基金 supported by the National Natural Science Foundation of China (71273105) the Fundamental Research Funds for the Central Universities,China (2013YB12)
关键词 China agricultural carbon emissions spatial-temporal characteristics driving factor LMDI model China, agricultural carbon emissions, spatial-temporal characteristics, driving factor, LMDI model
  • 相关文献

参考文献13

二级参考文献151

共引文献1179

同被引文献731

引证文献37

二级引证文献559

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部