期刊文献+

RK-AUSM^+混合格式在跨声速Euler方程计算中的应用 被引量:1

RK-AUSM~+ Schemes Applied to Transonic Euler Equations Solution
下载PDF
导出
摘要 首先在一维AUSM+格式的基础上,推导出了AUSM+格式在任意曲线坐标下的二维形式,并将其与Runge-Kutta格式结合,对跨声速Euler方程进行求解。最后,为了验证RK-AUSM+混合格式的有效性,将典型双圆弧叶栅无粘跨声速流动作为算例。本文计算结果和文献结果符合很好。 In this paper, an AUSM+ schemes is developed for the multidimensional hyperbolic conservation laws in curvilinear coordinates. The present scheme combined with the Runge-Kutta scheme is applied to transonic Euler equations solution. In order to examine the accuracy of the RK-AUSM+ schemes, two-dimensional transonic flow through the cascade built of two circular arc blades is computed. The computed results is compared with the other computed results and good agreement between them is obtained. The results given in this paper show that the present scheme possess obvious superiority in aspects of convergence rate, accuracy and robustness for calculating transonic flow fields compared with CD scheme, and there is no any spurious oscillation near the shock wave.
出处 《应用力学学报》 EI CAS CSCD 北大核心 2001年第1期116-120,共5页 Chinese Journal of Applied Mechanics
关键词 AUSM^+格式 Runge-Kutta格式 跨声速流动 EULER方程 激波 曲线坐标系 AUSM+ scheme, Runge-Kutta scheme, transonic flow, Euler equations, shock wave, curvilinear coordinates.
  • 相关文献

参考文献2

  • 1Liou M S,J Comput Phys,1996年,129卷,364~382页
  • 2Liou M S,J Comput Phys,1993年,107卷,23~39页

同被引文献32

  • 1梁德旺,王可.AUSM+格式的改进[J].空气动力学学报,2004,22(4):404-409. 被引量:26
  • 2MACCORMACK R W. Numerical solution of the interaction of a shock wave with a laminar boundary layer[C]//Proceedings of the Second International Conference on Numerical Methods in Fluid Dynamics, 1971 :151-163.
  • 3ZHONG X L, WANG X W. Direct numerical simulation on the receptivity, instability, and transition of hypersonic boundary layers[J]. Annu Rev Fluid Mech, 2012, 44:527-561.
  • 4MARTIN M P. Direct numerical simulation of hypersonic turbulent boundary layers. Part 1. Initialization and comparison with experiments[J]. J Fluid Mech, 2007, 570:347-364.
  • 5PIROZZOLI S. Conservative hybrid compact-WENO schemes for shock-turbulence interaction[J]. J Comput Phys, 2002, 178:81-117.
  • 6PIROZZOLI S. Numerical methods for high-speed flows[J]. Annu Rev Fluid Mech, 2011, 43:163-194.
  • 7EKATERINARIS J A. High-order accurate, low numerical diffusion methods for aerodynamics[J]. Prog Aerosp Sci, 2005, 41:192-300.
  • 8LELE S K. Compact finite difference schemes with spectral-like resolution[J]. J Comput Phys, 1992, 103:16-42.
  • 9MAHESH K. A family of high order finite difference schemes with good spectral resolution[J]. J Comput Phys, 1998, 145:332-358.
  • 10STEGER J L, WARMING R F. Flux vector splitting of the inviscid gas dynamic equations with applications to finite difference methods[J]. J Comput Phys, 1981, 40:263-293.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部