摘要
该文研究了G神经网络的函数映射能力,给出了前馈G神经网络映射任意G型多项式的构造性证明。采用该文的方法映射同一个多项式,所用的神经元数目可少至以往方法的2/(n+1),其中n是G型多项式的次数。
In this paper, the function approximation of Gelenbe Neural Network (GNN) is discussed and it is proved that GNN can approximate any G-type polynomial by using constructional method. Number of units used by this method can be reduced to 2/(n + 1) of that used by previous methods for a same G-type polynomial, where n is the degree of G-type polynomial.
出处
《电子与信息学报》
EI
CSCD
北大核心
2001年第11期1134-1139,共6页
Journal of Electronics & Information Technology
基金
霍英东青年教师基金
国家自然科学基金(69772027)
关键词
G神经网络
函数映射
构造性证明
Neural network, GNN, Function approximation, G-type polynomial