摘要
A slug flow model considering the dispersed bubbles entrained from the tail of Taylor bubble(TB) and recoalesced with the successive TB was proposed. Experiment was conducted to test the validity of this model by using a high-speed camcorder and particle image velocimetry(PIV). It was found that the model was valid for predicting the characteristics of slug flow in airlift pump within average error of 14%. Moreover, large pipe diameter was found to accelerate the rise velocity of TB and decreases void fraction in liquid slug by a small margin.
A slug flow model considering the dispersed bubbles entrained from the tail of Taylor bubble(TB) and recoalesced with the successive TB was proposed. Experiment was conducted to test the validity of this model by using a high-speed camcorder and particle image velocimetry(PIV). It was found that the model was valid for predicting the characteristics of slug flow in airlift pump within average error of 14%. Moreover, large pipe diameter was found to accelerate the rise velocity of TB and decreases void fraction in liquid slug by a small margin.
基金
Supported by the National Key Basic Research Development Program of China(2014CB239200)
the National Natural Science Foundation of China(51574173,51705372)
the Hubei Provincial Natural Science Foundation(2015CFA154)
Jiangsu Provincial Natural Science Foundation of China(No.BK20170411)