期刊文献+

多变量半自适应预测控制系统架构 被引量:2

A framework for multi-variable, semi-adaptive predictive control system
原文传递
导出
摘要 针对模型因素引起的预测控制性能退化问题,本文提出一种多变量半自适应预测控制系统架构.该架构将传统的控制模式改变为测试模式,变传统的设定值控制为区间控制,从而实现了测试过程中输出变量的约束满足.所提出的半自适应预测控制体系架构能够在确保生产正常进行的前提下,实现过程的开环测试,提高测试效率,并通过极大化测试信号的幅值来确保测试过程的信噪比.进一步地,将该框架从约束预测控制扩展到双层结构预测控制,引入平衡系数实现经济效益与测试之间的平衡.本文提及的测试方法是一种在线开环测试,避免了闭环测试过程中测试输入信号与不可测噪声的相关性问题.仿真实例验证了该方法的有效性. In view of the degradation of predictive control performance caused by model mismatch, a multivariable, semi-adaptive zone predictive control system framework is presented. The proposed framework changes the traditional control mode to testing mode and turns set-point to zone control, thereby realizing the constraint satisfaction of the output variables of the test process. For the constraint zone model’s predictive control in the integrated testing mode, the amplitude strength of testing input signals is introduced to realize the constraint guarantee function and signal-to-noise ratio maximization. The framework implements the open-loop test to improve test efficiency under the premise of production on the rails. The signal-to-noise ratio of the testing process is ensured by maximizing the test signal amplitude. Furthermore, the framework is extended from constrained to two-layer model predictive control, and the benefit balance coefficient is introduced to realize the balance between economic benefit and testing. The method proposed in the paper is a type of on-line open-loop identification,which solves the problem of the correlation between input signals and noises in closed-loop identification. The simulation results verify the effectiveness of the method.
作者 郑洪宇 王鹏 邹涛 胡静涛 于海斌 Hongyu ZHENG;Peng WANG;Tao ZOU;Jingtao HU;Haibin YU(College of Information Science and Engineering,Northeastern Unive.rsity,Shenyang 110819,China;Industrial Control Networks and Systems Department,Shenyang Institute of Automation,Chinese Academy of Sicences,Shenyang 110016,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《中国科学:信息科学》 CSCD 北大核心 2019年第1期57-73,共17页 Scientia Sinica(Informationis)
基金 国家重点研发计划(批准号:2017YFA0700303 2017YFB0603703) 国家自然科学基金(批准号:61773366 61533015)资助项目
关键词 自适应控制 模型预测控制 系统辨识 参数估计 区间控制 adaptive control model predictive control system identification parameter estimation zone control
  • 相关文献

参考文献1

二级参考文献13

  • 1席裕庚.复杂工业过程的满意控制[J].信息与控制,1995,24(1):14-20. 被引量:47
  • 2Darby M L, Nikolaou M. MPC: current practice and chal- lenges. Control Engineering Practice, 2012, 20(4): 328-342.
  • 3Ying C M, Joseph B. Performance and stability analysis of LP-MPC and QP-MPC cascade control systems. AIChE Journal, 1999, 45(7): 1521-1534.
  • 4Qin S J, Badgwell T A. A survey of industrial model predic- tive control technology. Control Engineering Practice, 2003, 11(7): 733-764.
  • 5Rao C V, Rawlings J B. Steady states and constraints in model predictive control. AIChE Journal, 1999, 45(6): 1266-1278.
  • 6Nikandrov A, Swartz C L E. Sensitivity analysis of LP-MPC cascade control systems. Journal of Process Control, 2009, 19(1): 16-24.
  • 7Kassmann D E, Badgwell T A, Hawkins R B. Robust steady- state target calculation for model predictive control. AIChE Journal, 2000, 46(5): 1007-1024.
  • 8Dayal D S, MacGregor J F. Identification of finite im- pulse response models: methods and robustness issues. In- dustrial 35 Engineering Chemistry Research, 1996, 35(11): 4078-4090.
  • 9席裕庚,谷寒雨.有约束多目标多自由度优化的可行性分析及软约束调整[J].自动化学报,1998,24(6):727-732. 被引量:29
  • 10邹涛,李海强.具有积分环节多变量系统的双层结构预测控制[J].浙江大学学报(工学版),2011,45(12):2079-2087. 被引量:13

共引文献21

同被引文献9

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部