期刊文献+

ZN-1型粘弹性材料的GHM模型参数确定(英文) 被引量:3

Parametric Determination for GHM of ZN-1 Viscoelastic Material
下载PDF
导出
摘要 将 ZN- 1粘弹性材料的 GHM模型与工程上常用的有限元方法相结合 ,引入耗散自由度 ,将由于 ZN- 1型粘弹性材料导致的非线性微分方程转化为一般的二阶定常线性系统模型 ;并将 GHM模型与最常用的标准线性模型、分数导数模型进行比较 ,结果表明本研究提出的确定 The GHM(Golla Hughes McTavish) model of ZN 1 Viscoelastic Material is combined with finite element method (FEM), which is the most frequently used method in Engineering. It can approach time consuming iteration in solving model parameters and responses by introducing dissipation coordinates . The parameters of GHM model are determined by nonlinear curve fitting in complex frequency domain. This is converted into nonlinear optimization problem with constrained condition. The results show that the method proposed in the present paper to determine the parameters of GHM model is correct, simple and effective to employ GHM model to perform dynamic analysis.
机构地区 上海交通大学
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2002年第2期92-95,共4页 Rare Metal Materials and Engineering
基金 National Defence Science Key L aboratory Foundation(JS5 2 .4 .3)
关键词 GHM模型 有限元 粘弹性材料 GHM model finite element method viscoelastic material
  • 相关文献

参考文献10

  • 1Shen I Y.Hybrid Damping Through Intelligent Constrained Layer Treatments[].Journal of Vibration and Acoustics.1994
  • 2Baz A.Optimization of Energy Dissipation Characteristics of Active Constrained Layer Damping[].J of Smart Material and Structures.1997
  • 3Unger E,Kerwin E.Loss Factors of Viscoelastic Systems in Terms of Energy Concepts[].The Journal of The Acoustical Society of America.1962
  • 4Johnson C D et al.Finite Element Prediction of Damping in Structure with Constrained Visco-elastic Layser[].AIAA Journal.1982
  • 5Hu B-G.A Modified MSE Method for Viscoelastic Systems: A Wighted Stiffness Matrix Approach[].Journal of Vibration and Acoustics.1995
  • 6Christensen R M.Theory of Viscoelasticity, An Introduction[]..1982
  • 7Qian Chen.The Dynamic Analysis of Composite Structure of Viscoelastic Material ( Doctoral dissertation )[]..1987
  • 8Ronald L Bagley.Fractional Calculs -A Different Approach to the Analysis of Viscoelastically Damped Structures[].AIAA Journal.1983
  • 9Ronald L Bagly,Peter J Torvik.Fractional Calculus in the Transient Analysis of Viscoelastically Damped Structures[].AIAA Journal.1985
  • 10Ronlad L Bagley,Calico R A.Fractional Order State Equations for the Control of Viscoelatically Damped Structures[].Journal of Guidance Control and Dynamics.1991

同被引文献20

  • 1李军强,刘宏昭,王忠民.线性粘弹性本构方程及其动力学应用研究综述[J].振动与冲击,2005,24(2):116-121. 被引量:39
  • 2BALAMURUGAN V, NARAYANAN S. Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment[J]. Journal of Sound and Vibration, 2002, 249(2): 227-250.
  • 3SHI Yinming, HUA Hongxing, SOL H. The finite element analysis and experimental study of beams with active constrained layer damping treatments[J]. Journal of Sound and Vibration, 2004, 278(24): 343-363.
  • 4SHI Y M, LI Z F, HUA H X, et al. The modelling and vibration control of beams with active constrained layer damping[J]. Journal of Sound and Vibration, 2001, 245(5): 785-800.
  • 5LIU Tianxiong, HUA Hongxing, ZHANG Zhiyi. Robust control of plate vibration via active constrained layer damping[J]. Thin-Walled Structures, 2004, 42(3): 427-448.
  • 6MCTAVISH D J, HUGHES P C. Modeling of linear viscoelastic space structures[J]. Vibration and Acoustics, 1993, 115(1): 103-110.
  • 7GOLLA D F, HUGHES P C. Dynamics of viscoelastic structures a time-domain finite element formulation[J]. Applied Mechanics, 1985, 52(7): 897-907.
  • 8李德葆, 陆秋海. 实验模态分析与应用[M]. 北京:科学出版社,2001: 78-79.
  • 9MEIROVITCH L. Dynamic and control of structures[M]. New York: John Wiley & Sons, 1990: 89-95.
  • 10BOUC R, FRIOT E. Contrle optimal par retroaction du rayonnement d'une plaque munie de capteurs et d'actionneurs piézo-électriques non colocalisés[C]//2eme Colloque GDR Vibroacoustique. Marseille:, 1996: 229-248.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部