期刊文献+

一类具有变指数伪抛物型方程解的存在唯一性 被引量:2

Existence and Uniqueness for a Class of Pseudo-parabolic Equations with Variable Exponent
下载PDF
导出
摘要 考虑一类具有变指数伪抛物型方程的第一初边值问题.对于一般光滑区域Ω,先通过Galerkin方法构造问题的逼近解,然后在参数满足一定条件下利用能量估计方法得到逼近解的一致性先验估计,进而证明该类问题弱解的存在唯一性. We studied the first initial and boundary value problems for a class of pseudo-parabolic equations with variable exponent in a smooth domain Ω. Firstly, we constructed the approximate solutions through Galerkin method, then under some conditions limited on the parameter, using energy method, we obtained the uniform estimates for the approximate solutions. At last, using the above estimate, we gave the existence and uniqueness result for the original problem.
作者 王长佳 代群
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2014年第4期641-646,共6页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:10971080)
关键词 伪抛物型方程 变指数 存在唯一性 pseudo-parabolic equations variable exponent existence and uniqueness
  • 相关文献

参考文献9

  • 1Barenblatt I G, Bertsch M, Dal Passo R, et al. A Degenerate Pseudoparabolic Regularization of a Nonlinear Forward-Backward Heat Equation Arising in the Theory of Heat and Mass Exchange in Stably Stratified Turbulent Shear Flow [J]. SIAM Journal on Mathematical Analysis, 1993, 24(6) : 1414-1439.
  • 2Bock I. On the Semidiscretization and Linearization of Pseudoparabolic Von Karman System for Viscoelastic Plates [J]. Mathematical Methods in the Applied Sciences, 2006, 29(5) : 557-573.
  • 3Ptashnyk M. Pseudoparabolic Equations with Convection [J]. IMA Journal of Applied Mathematics, 2007, 72(6) : 912-922.
  • 4Gajewski H, Groger K, Zacharias K. Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen [M]. Berlin: Akademie Verlag, 1974.
  • 5Demidenko G V, Upsenskii S V. Partial Differential Equations and Systems Not Solvable with Respect to the Highest-Order Derivative [M]. New York:CRC Press, 2003.
  • 6Stefanelli U. On a Class of Doubly Nonlinear Nonlocal Evolution Equations [J]. Differential Integral Equations, 2002, 15(8):897-1023.
  • 7Showalter R E. Monotone Operators in Banach Space and Nonlinear Partial Differential Equations [M].Providence, RI: Amer Math Soc, 1997.
  • 8Al'shin A B, Korpusov M O, Sveshnikov A G. Blow-up in Nonlinear Sobolev Type Equations [M]. De Gruyter, Series: De Gruyter Series in Nonlinear Analysis and Applications 15. Berlin: Walter de Gruyter & Co. , 2011.
  • 9Diening L, Harjulehto P, Hasto P, et al. Lebesgue and Sobolev Spaces with Variable Exponents [M]. Berlin: Springer, 2011.

同被引文献7

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部