Outlier Detection Method based on Hybrid Rough - Negative Algorithm
Outlier Detection Method based on Hybrid Rough - Negative Algorithm
摘要
This paper discusses on the detection of outliers by hybridizing Rough_Outlier Algorithm with Negative Association Rules. An optimization algorithm named Binary Particle Swarm Optimization is used to improve the computation of Non_Reduct in order to detect outliers.By using Binary PSO algorithm, the rules generated from Rough_Outliers algorithm is optimized, giving significant outliers object detected. The detection ofoutliers process is then enhanced by hybridizing it with Negative Association Rules. Frequent and Infrequent item sets from outlier rules are generated. Results show that the hybrid Rough_Negative algorithm is able to uncover meaningful knowledge of outliers from the frequent and infrequent item sets. These knowledge can then be used by experts in their field of domain for better decision making.
参考文献28
-
1Hodge, V. and Austin, 1. 2004. A survey of outlier detection methodologies. Artificial Intelligence Review, 22(2): p. 85-126.
-
2Z. Long, et al. 2010. Multiple Attribute Frequent Mining-Based for Dengue Outbreak, in Advanced Data Mining and Applications, L. Cao, Y. Feng, and 1. Zhong, Editors. Springer Berlin / Heidelberg. P. 489-496.
-
3Aggrawal, C.C. andYu, P. 2001. Outlier Detection in High Dimensional Data. In SIGMOD'O I. 200 I. Santa Barbara.
-
4Breunig, M.M., Krigel, PNg.R.TH. and Sander, J. 2000. LOF:ldentifying density-based local outlier. In Proc. ACM SIGMOD IntConf on Management of Data. 2000. Dallas, Texas.
-
5Jiang, F., Sui, Y. and Cao, C. 2010. An information entropy-based approach to outlier detection in rough sets. Expert Systems with Applications, 2010. 37(9): p. 6338-6344.
-
6He, Z., Xu, X. and Deng, S. 2003. Discovering cluster-based local outliers. Pattern Recognition Letters, 2003.24(9-10): p. 1641-1650.
-
7Wroblewski, 1, 2004. Genetic Algorithms in Decomposition and Classification Problem. Rough Setx in Knowledge Discovery (2),2004 pp 471-487.
-
8Bazan, 1.G, Nguyen,H.S., Synak. P., S.H., &Wroblewski, 1.,2000. Rough Sets Algorithms in Classification Problem. In L.Polkowski,T.S. &T.Y.Lin (Eds), Rough Set Methods and Applications. Physica- Verlag 2000 pp49-88.
-
9Faizah, S. 2008. Outlier Detection Method Based on Non-Reduct Computation using Rough Sets Theory, Doctoral Thesis, 2008, Universiti Kebangsaan Malaysia.
-
10Misinem, AzuralizaA.B.,AbduIRazak, Hand Mohd Zakree, A.N, 2010. A Rough Set outlier detection based on Particle Swarm Optimization, International Conference on Intelligent Systems Design and Applications, 2010.
-
1胡继钧.相异关系模式挖掘算法[J].数字技术与应用,2010,28(8):162-163.
-
2黄雄,宋中山,刘少英.决策树的数据预处理[J].软件导刊,2009,8(10):32-35. 被引量:1
-
3潘锦基,岳键,顾云丽.数据挖掘技术在入侵检测系统中的应用研究[J].金陵科技学院学报,2007,23(1):13-16.
-
4杨斌,董祥军.基于负关联规则的Web使用挖掘技术及发展趋势[J].微型机与应用,2009,28(24):64-66.
-
5陈华,李继波.异常(Outlier)检测算法综述[J].大众科技,2005(9):96-97. 被引量:3
-
6单叙生.测试数据中异常值的判断与剔除[J].铁道标准化,1991(4):34-38.
-
7谢伙生,王闻.带约束的负关联规则挖掘算法[J].福州大学学报(自然科学版),2009,37(4):494-497.
-
8马晓春,高翔,高德远.聚类分析在入侵检测系统中的应用研究[J].微电子学与计算机,2005,22(4):134-136. 被引量:13
-
9王士乾,李东生.一种分布式入侵检测系统的设计[J].太原理工大学学报,2004,35(4):456-459. 被引量:1
-
10唐姜贤,王阳.朴素贝叶斯分类器应用的两点注记[J].商情,2014(30):160-161.