期刊文献+

Outlier Detection Method based on Hybrid Rough - Negative Algorithm

Outlier Detection Method based on Hybrid Rough - Negative Algorithm
下载PDF
导出
摘要 This paper discusses on the detection of outliers by hybridizing Rough_Outlier Algorithm with Negative Association Rules. An optimization algorithm named Binary Particle Swarm Optimization is used to improve the computation of Non_Reduct in order to detect outliers.By using Binary PSO algorithm, the rules generated from Rough_Outliers algorithm is optimized, giving significant outliers object detected. The detection ofoutliers process is then enhanced by hybridizing it with Negative Association Rules. Frequent and Infrequent item sets from outlier rules are generated. Results show that the hybrid Rough_Negative algorithm is able to uncover meaningful knowledge of outliers from the frequent and infrequent item sets. These knowledge can then be used by experts in their field of domain for better decision making.
出处 《Journal of Mathematics and System Science》 2014年第6期391-397,共7页 数学和系统科学(英文版)
关键词 Negative association rules association rules mining OUTLIER non-reduct infrequent item sets frequent item sets rare. 异常检测方法 PSO算法 负关联规则 粒子群优化 粗糙 混合 异常值 二进制
  • 相关文献

参考文献28

  • 1Hodge, V. and Austin, 1. 2004. A survey of outlier detection methodologies. Artificial Intelligence Review, 22(2): p. 85-126.
  • 2Z. Long, et al. 2010. Multiple Attribute Frequent Mining-Based for Dengue Outbreak, in Advanced Data Mining and Applications, L. Cao, Y. Feng, and 1. Zhong, Editors. Springer Berlin / Heidelberg. P. 489-496.
  • 3Aggrawal, C.C. andYu, P. 2001. Outlier Detection in High Dimensional Data. In SIGMOD'O I. 200 I. Santa Barbara.
  • 4Breunig, M.M., Krigel, PNg.R.TH. and Sander, J. 2000. LOF:ldentifying density-based local outlier. In Proc. ACM SIGMOD IntConf on Management of Data. 2000. Dallas, Texas.
  • 5Jiang, F., Sui, Y. and Cao, C. 2010. An information entropy-based approach to outlier detection in rough sets. Expert Systems with Applications, 2010. 37(9): p. 6338-6344.
  • 6He, Z., Xu, X. and Deng, S. 2003. Discovering cluster-based local outliers. Pattern Recognition Letters, 2003.24(9-10): p. 1641-1650.
  • 7Wroblewski, 1, 2004. Genetic Algorithms in Decomposition and Classification Problem. Rough Setx in Knowledge Discovery (2),2004 pp 471-487.
  • 8Bazan, 1.G, Nguyen,H.S., Synak. P., S.H., &Wroblewski, 1.,2000. Rough Sets Algorithms in Classification Problem. In L.Polkowski,T.S. &T.Y.Lin (Eds), Rough Set Methods and Applications. Physica- Verlag 2000 pp49-88.
  • 9Faizah, S. 2008. Outlier Detection Method Based on Non-Reduct Computation using Rough Sets Theory, Doctoral Thesis, 2008, Universiti Kebangsaan Malaysia.
  • 10Misinem, AzuralizaA.B.,AbduIRazak, Hand Mohd Zakree, A.N, 2010. A Rough Set outlier detection based on Particle Swarm Optimization, International Conference on Intelligent Systems Design and Applications, 2010.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部