期刊文献+

Peng's maximum principle for a stochastic control problem driven by a fractional and a standard Brownian motion 被引量:2

Peng's maximum principle for a stochastic control problem driven by a fractional and a standard Brownian motion
原文传递
导出
摘要 We study a stochastic control system involving both a standard and a fractional Brownian motion with Hurst parameter less than 1/2.We apply an anticipative Girsanov transformation to transform the system into another one,driven only by the standard Brownian motion with coefficients depending on both the fractional Brownian motion and the standard Brownian motion.We derive a maximum principle and the associated stochastic variational inequality,which both are generalizations of the classical case. We study a stochastic control system involving both a standard and a fractional Brownian motion with Hurst parameter less than 1/2. We apply an anticipative Girsanov transformation to transform the system into another one, driven only by the standard Brownian motion with coefficients depending on both the fractional Brownian motion and the standard Brownian motion. We derive a maximum principle and the associated stochastic variational inequality, which both are generalizations of the classical case.
出处 《Science China Mathematics》 SCIE 2014年第10期2025-2042,共18页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China(Grant No11301560)
关键词 fractional Brownian motion stochastic control system backward stochastic differential equation variational inequality maximum principle Girsanov transformation Galtchouk-Kunita-Watanabe decomposition 标准布朗运动 随机控制系统 分数布朗运动 控制问题 驱动 Hurst参数 随机变分不等式 高原
  • 相关文献

参考文献19

  • 1Bensoussan A. Lecture on Stochastic Control. In: Nonlinear Filtering and Stochastic Control. Lecture Notes in Mathematics, vol. 972. New York: Springer-Verlag, 1981.
  • 2Biagini F, Hu Y, ?ksendal B, et al. A stochastic maximum principle for processes driven by fractional Brownian motion. Stochastic Process Appl, 2002, 100: 233-253.
  • 3Bismut J M. An introductory approach to duality in optimal stochastic control. SIAM Rev, 1978, 20: 62-78.
  • 4Buckdahn R. Anticipative Girsanov Transformations and Skorohod Stochastic Differential Equations. Providence, RI: Amer Math Soc, 1994.
  • 5Buckdahn R, Djehiche B, Li J. A general stochastic maximum principle for SDEs of mean-field type. Appl Math Optim, 2011, 64: 197-216.
  • 6Buckdahn R, Ichihara N. Limit theorem for controlled backward SDEs and homogenization of Hamilton-Jacobi-Bellman equations. Appl Math Optim, 2005, 51: 1-33.
  • 7Buckdahn R, Labed B, Rainer C, et al. Existence of an optimal control for stochastic control systems with nonlinear cost functional. Stochastics, 2010, 82: 241-256.
  • 8Cheridito P, Nualart D. Stochastic integral of divergence type with respect to fractional Brownian motion with Hurst parameter H ∈ (0, 1/2 ). Ann Inst H Poincaré Probab Statist, 2005, 41: 1049-1081.
  • 9Guerra J, Nualart D. Stochastic differential equations driven by fractional Brownian motion and standard Brownian motion. Stoch Anal Appl, 2008, 26: 1053-1075.
  • 10Han Y, Hu Y, Song J. Maximum principle for general controlled systems driven by fractional Brownian motions. Appl Math Optim, 2013, 7: 279-322.

同被引文献2

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部