期刊文献+

双向飞翼超声速客机激波阻力和声爆研究 被引量:2

Study on Drag and Sonic Boom of Supersonic Bi-Directional Flying Wing
下载PDF
导出
摘要 基于超声速双向飞翼构型,采用CFD方法进行阻力计算,采用F-BOOM程序进行声爆计算,研究翼型、平面形状和EFCE激波阻力优化算法对双向飞翼激波阻力和声爆的影响。计算结果表明,平底构型可以明显降低双向飞翼超声速客机的超声速巡航的声爆,却很大程度上增加了巡航阻力,而对称构型却恰好相反;细长的平面几何形状对降低双向飞翼激波阻力和声爆都有作用,尤其对降低对称构型的声爆效果明显;EFCE激波阻力优化算法对降低双向飞翼激波阻力有明显作用,但同时会带来声爆方面的不利影响。因此,超声速客机的减阻设计和低声爆设计需要进行权衡研究。 Based on SBiDir-FW ( supersonic bi-directional flying wing ) , CFD ( Computational Fluid Dynamics ) method is used to calculate the drag and F-BOOM method is applied to compute the sonic boom;this study focuses on how the airfoil, flat shape and EFCE shock wave drag optimization algorithm affect the drag and sonic boom of SBiDir-FW. The results and their analysis show preliminarily that: ( 1 ) flat bottom configuration can reduce the cruise sonic boom of SBiDir-FW remarkably, but it greatly increases the cruising drag, while the opposite phenome-non can be detected in symmetrical configuration;(2)slender flat shape can reduce drag and sonic boom of SBiDir-FW, especially for reducing the sonic boom of symmetrical configuration;(3)EFCE shock wave drag optimization algorithm can reduce the shock wave drag of SBiDir-FW obviously, but will also bring adversely effect on sonic boom. Therefore, the balance should be weighed when considering the design of low drag and low sonic boom for supersonic aircraft.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2014年第4期517-522,共6页 Journal of Northwestern Polytechnical University
关键词 超声速客机 双向飞翼 激波阻力 声爆 aerodynamic configurations, aerodynamic drag, algorithms, airfoils, angle of attack, calculations,computational fluid dynamics, design, Euler equations, flow fields, Lagrange multipliers, Mach number, mesh generation, optimization, pressure, schematic diagrams, shock waves, supersonic air-craft, wings bidirectional flying wing, shock wave drag, sonic boom
  • 相关文献

参考文献5

二级参考文献25

  • 1Piotkin K J.PCBoom sonic boom prediction model:Version 1.0e[R].Wyle Research Report WR 95-22E,1998.
  • 2Carlson H W.Simplified sonic boom prediction[R].NASA Technical Paper 1122,1978.
  • 3Elmer K R.Variability of measured sonic boom signatures[R].NASA Contractor Report 191483,1994.
  • 4Norris S R.Ground-based sensors for the SR-71 sonic boom propagation experiment[R].NASA Technical Memorandum 104310,1995.
  • 5Zha G C, Im H, Espinal D. Toward zero sonic boom and high efficiency supersonic flight, part I: a novel concept of supersonic bi-directional flying wing. AIAA-2010-1013, 2010.
  • 6Nikolic V, Jumper E J. Zero lift wave drag calculation using supersonic area rule and its modifications. AIAA- 2004-217, 2004.
  • 7Kulfan B M, Bussoletti J E. "Fundamental" parametric geometry representations for aircraft component shapes. AIAA-2006-6948, 2006.
  • 8Kulfan B M. New supersonic wing far-field composite-ele ment wave-drag optimization method, " FCE". AIAA- 2008-132, 2008.
  • 9Lane A K, Marshall D D. A surface parameterization method for airfoil optimization and high lift 2D geometries utilizing the CST methodology. AIAA-2009-1461, 2009.
  • 10Kulfan B M. A universal parametric geometry representa- tion method-"CST". AIAA-2007-62, 2007.

共引文献77

同被引文献27

引证文献2

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部