期刊文献+

Finite p-groups whose nonnormal subgroups have orders at most p^3 被引量:4

Finite p-groups whose nonnormal subgroups have orders at most p^3
原文传递
导出
摘要 We classify finite p-groups all of whose nonnormal subgroups have orders at most p3, p odd prime. Together with a known result, we completely solved Problem 2279 proposed by Y. Berkovich and Z. Janko in Groups of Prime Power Order, Vol. 3. We classify finite p-groups all of whose nonnormal subgroups have orders at most p3, p odd prime. Together with a known result, we completely solved Problem 2279 proposed by Y. Berkovich and Z. Janko in Groups of Prime Power Order, Vol. 3.
出处 《Frontiers of Mathematics in China》 SCIE CSCD 2014年第5期1169-1194,共26页 中国高等学校学术文摘·数学(英文)
基金 Acknowledgements The authors cordially thank the referees for detailed and valuable comments, which help them to improve the paper. This work was supported by the National Natural Science Foundation of China (Grant Nos. 11371232, 11101252), the Natural Science Foundation of Shanxi Province (No. 2012011001, 2013011001), and Shanxi Scholarship Council of China (No. [201118).
关键词 Minimal non-abelian p-group nonnormal subgroup centralextension Minimal non-abelian p-group, nonnormal subgroup, centralextension
  • 相关文献

参考文献2

二级参考文献20

  • 1An L J, Hu R F, Zhang Q H. Finite p-groups with a minimal non-abelian subgroup of index p (Ⅳ). ArXiv:1310.5503.
  • 2Berkovich Y. Groups of Prime Power Order I. Berlin-New York: Walter de Gruyter, 2008.
  • 3Fang X G, An L J. A classification of finite metahamiltonian p-groups. ArXiv:1310.5509.
  • 4Hall M, Senior J K. The Groups of Order 2n (n≤ 6). New York: MacMillan, 1964.
  • 5Huppert B. Endliche Gruppen I. Berlin: Springer-Verlag, 1967.
  • 6Qu H P, Xu M Y, An L J. Finite p-groups with a minimal non-abelian subgroup of index p (Ⅲ). ArXiv:1310.5496.
  • 7Qu H P, Yang S S, Xu M Y, et al. Finite p-groups with a minimal non-abelian subgroup of index p (Ⅰ). J Algebra,2012, 358: 178-188.
  • 8Qu H P, Zhao L B, Gao J, et al. Finite p-groups with a minimal non-abelian subgroup of index p (V). J Algebra Appl, submitted.
  • 9Tuan H F. A theorem about p-groups with abelian subgroup of index p. Acad Sinica Science Record, 1950, 3: 17-23.
  • 10Xu M Y. An Introduction to Finite Groups (in Chinese). Beijing: Science Press, 1987.

共引文献10

同被引文献10

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部