期刊文献+

二阶离散多智能体系统的鲁棒最优一致 被引量:1

ROBUST OPTIMAL CONSENSUS OF SECOND-ORDER DISCRETE MULTI-AGENT SYSTEMS
原文传递
导出
摘要 研究了不确定二阶离散多智能体有向网络的鲁棒最优一致问题.首先,基于每个智能体可获得的局部信息设计了一个控制协议,并且智能体间相互影响的权重系数具有模型不确定性.其次,利用智能体的能量消耗思想,给出了系统的一个保代价性能指标.然后,利用Lyapunov函数的方法,分析了多智能体网络系统在满足保代价性能指标下的最优一致问题,得到了系统达到渐近最优一致的条件.最后,仿真结果验证了所获得的结果的正确性. This paper is devoted to robust optimal consensus problem of second- order discrete multi-agent systems with directed topologies and uncertainty. Firstly, a protocol is proposed based on the information received from other agents, and weighted coefficients between agents have model uncertainty. Secondly, a cost performance index is proposed for the energy consumption of all agents. Thirdly, using the method of Lyapunov function, the analysis is provided for the robust optimal consensus problem of multi-agent network under the cost performance index, and sufficient conditions are derived for the consensus of systems. Finally, simulation results are provided to demonstrate the effectiveness of presented results.
作者 莫立坡
出处 《系统科学与数学》 CSCD 北大核心 2014年第7期876-887,共12页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金项目(61304155) 北京市委组织部优秀人才培养D类项目(2012D005003000005) 北京工商大学青年教师科研启动基金项目(QNJJ2011-34) 北京市属高校人才强教计划项目(201106206)资助课题
关键词 最优一致 多智能体 离散 不确定性 保代价性能 Optimal consensus, multi-agent, discrete, uncertainty, cost performance.
  • 相关文献

参考文献28

  • 1Vicsek T, Cziro6k A, Jacob E, Cohen I, Shochet O. Novel type of phase transition in a system of self-deriven particles. Phys. Rev. Lett., 1995, 75: 1226-1229.
  • 2Jadbabaie A, Lin J, Morse A S. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Automatic Control, 2003, 48: 988-1001.
  • 3Moreau L. Stability of multi-agent systems with time-dependent communication links. IEEE Trans. Automatic Control, 2005, 50: 169-182.
  • 4Olfati-Saber R, Murray R M. Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Automatic Control, 2004, 49: 1520-1533.
  • 5Ren W, Beard R W. Consensus seeking in multi-agent systems under dynamically changing interaction topologies. IEEE Trans. Automatic Control, 2005, 50: 655-661.
  • 6Hong Y, Gao L, Cheng D, Hu J. Lyapunov-based approach to multiagent systems with switching jointly connected interconnection. IEEE Trans. Automatic Control, 2007, 52: 943-948.
  • 7Hu J, Hong Y. Leader-follower coordination of multi -agent systems with coupling time delays. Physica A, 2007, 374: 853-863.
  • 8Qu Z, Wang J, Hull R A. Cooperative control of dynamical systems with application to au- tonomous vehicles. IEEE Trans. Automatic Control, 2008, 53: 894-911.
  • 9Scardovi L, Sepulchre R. Synchronization in networks of identical linear systems. Automatica, 2009, 45: 2557-2562.
  • 10Ni W, Cheng D. Leader-following consensus of multi- agent systems under fixed and switching topology. Systems and Control Letters, 2010, 59:209- 217.

二级参考文献52

  • 1Vicsek T, Czirook A, Ben-Jacob E, Cohen O, Shochet I 1995 Phys. Rev. Lett. 75 1226
  • 2Jadbabaie A, Lin J, Morse A S 2003 Aurora. Control 48 988
  • 3Lin P, Jia Y, Du J, Yuan S 2008 Asian Journal of Control 10 254
  • 4Tanner H, Jadbabaie A, Pappas G 2003 Proceedings of the g2nd IEEE Conference on Decision and Control 2016
  • 5Olfati-Saber R, Murray R M 2004 Autom. Control 49 1520
  • 6Ren W, Beard R W 2005 Automat. Control 511 655
  • 7Li Z 2008 Physica A 387 1369
  • 8Lin P, Jia Y 2008 Physica A 387 303
  • 9Lin P, Jia Y 2005 Systems and Control Letters 10 1016
  • 10Hong Y G, Chen G R, Linda B 2008 Automatica 44 846

共引文献16

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部